La Galleria delle Applicazioni raccoglie un'ampia varietà di tutorial e di app dimostrative realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file dei modelli e delle app demo pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni.

Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.


Bubble-induced Entrainment Between Stratified Liquid Layers

This model is a benchmark for three-phase flow commonly used in food processing, pharmaceutical industry, and chemical processing. The results are validated against data reported in the literature. A gas bubble rises through two layers of liquid, a lighter liquid resting on top of a heavier one. As the bubble travels from the heavier liquid, it entrains some of the heavier liquid in its wake ...

Separation Through Electrocoalescence

Applying an electric field across a suspension of immiscible liquids may stimulate droplets of the same phase to coalesce. The method known as electrocoalescence has important applications, for instance, in the separation of oil from water. To model electrocoalescence, you need to solve the Navier-Stokes equations, describing the fluid motion, as well as track the interfaces between the ...

Turbulent Mixing of a Trace Species

This tutorial model demonstrates how mixing can be visualized in a stirred vessel by seeding a trace species from a point. The flow is modeled using the Rotating Machinery, Fluid Flow physics which solves Navier-Stokes equations on geometries with rotating parts, for example impellers. The transport of the trace species is modeled using the Transport of Diluted Species physics.

Vibrating Plate in a 2D Viscous Parallel Plate Flow

This is a small 2D demonstration model that couples the *Linearized Navier-Stokes, Frequency Domain*, *Solid Mechanics*, and *Creeping Flow* physics interfaces to model the vibrations of a plate located in a 2D viscous parallel plate flow. This type of model is used to model fluid-structure interaction (FSI) in the frequency domain. For simplicity, the flow is assumed to be a creeping flow. ...

Phase Separation

Phase separation occurs when a binary system is quenched from its stable, homogeneous one-phase state into the two-phase region of its phase diagram. The spontaneous separation of two immiscible fluids is sometimes referred to as spinodal decomposition. Each phase tends to separate into pure components. This benchmark model takes two initially mixed, immiscible phases and observes their ...

Contaminant-Removal from Wastewater in a Secondary Clarifier by Sedimentation

Wastewater treatment is a several-step process for removing contaminants. Firstly, large, solid particles are removed through sedimentation, flotation, and filtration. And then in a second step, biological treatment causes the smaller particles to aggregate, forming so called flocs. These flocs can be more easily removed by processes such as sedimentation. In a circular secondary clarifier, ...

Supersonic Air-to-Air Ejector

In this study, the compressible turbulent flow through a supersonic ejector is modeled using the *High Mach Number Flow* interface in the CFD Module. Ejectors are simple mechanical components used for a wide range of applications, including industrial refrigeration, vacuum generation, gas recirculation, and thrust augmentation in aircraft propulsion systems. Ejectors induce a secondary flow ...

Coriolis Flow Meter: FSI Simulation in the Frequency Domain

A Coriolis flow meter, also known as a mass flow meter or an inertial flow meter, is used to measure the mass flow rate of a fluid traveling through it. It makes use of the fact that the fluid's inertia through an oscillating tube causes the tube to twist in proportion to the mass flow rate. Typically, the density and thereby the volumetric flow rate can also be assessed using the device. This ...

Stationary Incompressible Flow over a Backstep

This tutorial model solves the incompressible Navier-Stokes equations in a backstep geometry using the Laminar Flow interface. A characteristic feature of fluid flow in geometries of this kind is the recirculation region that forms where the flow exits the narrow inlet region. The model clearly demonstrates the formation of such a region, which is best displayed by visualizing the flow ...

Swirl Flow Around a Rotating Disk

Swirl flow is an application that involves steady rotational flow around an axis. Rather than modeling this process in 3D, COMSOL Multiphysics provides a 2D axisymmetric interface where the flow in the rotational direction is still included in the equations. This example shows the effect of a rotating cylinder on the flow in a container. Such applications are often used in chemical kinetic ...