Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
The detection, characterization, and classification of underground environmental hazardous objects [mines, IEDs, and other unexploded military hardware] is a worldwide problem that needs urgent attention and solution. While electromagnetic sensor technologies have been applied to ... Per saperne di più
This paper presents a numerical analysis of indented pipes based on the Finite Element (FE) within the framework of COMSOL Multiphysics. Numerical models using two-dimensional solid plane strain elements are evaluated. Geometric nonlinear analysis, nonlinear isotropic hardening material ... Per saperne di più
COMSOL Multiphysics is a powerful tool in theoretical study. Lei Zhou, Jiping Huang and other professors in Physics Department, Fudan University have achieved some exciting results of soft, tunable metamaterials. We use it to study non-equilibrium behavior of rhoeological (ER) fluids and ... Per saperne di più
In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2) from fossil fuel consumption. This idea is supported by the fact, that CO2 hydrates are more stable than methane hydrates at certain conditions. The potential of producing ... Per saperne di più
Numerous sensors based on various sensing principles are used to measure pressures and temperatures in wellbores. Of all these sensors, piezoelectric quartz is the most preferred means of sensing pressure and temperature and is probably the only sensor to meet stringent downhole ... Per saperne di più
A three-dimensional finite element model, based on the linear field equations for superimposed small vibrations onto nonlinear thermoelastic stressed media given by Lee and Yong, was developed. This method involves solving the thermal stress and piezoelectric model with geometric and ... Per saperne di più
Advances in visualization and discretization of pore structures by means of Computed Tomography, and rapidly increasing computational capabilities, allow numerical modeling of pore-scale fluid flow based on the incompressible Navier-Stokes equations rather than using a macroscopic ... Per saperne di più
Nowadays, mathematical models have been widely applied in varies fields; especially in fluid mechanics and nonlinear material which are very complex or even not possible to be calculated using analytical methods. In this paper, a hydraulic displacement amplifier coupled with fluid ... Per saperne di più
The research team has devised and patented an oscillating, hydro-kinetic power-generating device for use in river and tidal environments. The interaction of water and the designed foil in a straight rectangular turbulent channel is modeled explicitly using two conservation laws: ... Per saperne di più
The primary aim of using jet as mixer, like in case of other mixing devices, is to increase the heat and mass transfer between the phases. Beside the injection position the geometry of the jet mixer and the injection nozzle has a major effect on the injection. In our study COMSOL ... Per saperne di più