In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.

Particle Focusing Optimization and Stress Analysis of a Magnetic Horn

S. di Luise[1], A. Rubbia[2]
[1]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland and CERN European Organization for Nuclear Research, Geneva, Switzerland
[2]Swiss Federal Institute of Technology, ETH, Zurich, Switzerland

A neutrino oscillation experiment aims to the observation of the transformation of a neutrino of a given flavour into a neutrino of a different flavour. A beam of neutrinos is produced through the decay of charged pions which in turn are produced in the collision of high energy accelerated protons impinging on a thick target. A series of magnetic horns is used to focus charged particles produced ...

Towards Optimized Neural Stimulation in a Device for Urinary Incontinence

A.N. Shiraz[1], A. Demosthenous[1]
[1]E&EE Department, University College London, London, United Kingdom

After spinal cord injury (SCI) the functions of the lower urinary tract are often disrupted and may have fatal consequences for the patient. It has been shown that using a transrectal probe developed by Craggs et al., through conditional transrectal stimulation of pudendal nerve, it is possible to treat hyperreflexia in some of the SCI patients. To maximise the efficacy of this type of ...

FEM Analysis of Flamelet Wrinkling in a Diffusion Flame - new

Y. Li[1], T.C. Lieuwen[2], J. Zhou[1], H. Cao[1]
[1]Zhengzhou University, Zhengzhou City, Henan Province, China
[2]Georgia Institute of Technology, Atlanta, GA

One can hardly get the exact analytic solution of a full time-dependent convection-diffusion equation, for describing the dynamics of a non-premixed flamelet. The analytic solution of the linearized form with such a model was studied by MATLAB®. And also, a numerical computation was made with the linearization model in COMSOL Multiphysics® software, to provide a perfect accordance with the ...

稳态磁场对激光熔凝熔池的抑制作用研究 - new

王梁[1], 胡勇[1]

激光熔凝通常被作为材料表面的最终处理工艺,然而激光熔凝处理后,材料表面容易出现高低起伏的波纹,降低了其表面质量。因此,为了在激光熔凝处理后获得平整的表面,同时降低后续机加工所需的成本和时间,本文提出了利用稳态磁场抑制激光所致熔池运动的方法。以固液相变统一模型为基础,建立了考虑热传导、流体运动、相变及电磁场作用的多物理场耦合2D瞬态仿真模型,将洛仑兹力以体积力形式添加到动量方程源项中,并利用移动网格(ALE)的方法在模型中计算了熔池表面的运动形态。通过该模型计算了由稳态磁场引起的熔池中的洛伦兹力与由表面张力引起的Marangoni对流影响熔池表面形貌的相互影响过程以及不同磁场强度下熔池速度场、温度场分布情况。同时,包含激光功率、扫描速度、表面张力温度系数等相关材料属性和工艺参数对熔池表面形貌的影响也进行了仿真分析。通过激光熔凝后试样表面的实际高度扫面图像结果以及温度对比图 ...

Realistic Human Head Model for Simulating the Effect of Electrical Stimulation

S. Swargam [1], S. Devasahayam [2], S. Wankhar [2],
[1] Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
[2] Christian Medical College, Vellore, Tamil Nadu, India

Using a Realistic Human Head model to simulate the effect of electrical stimulation can be useful in understanding field distribution in the brain and therefore, the actual point of stimulation before doing it on human subject. With the help of this model, parameters like the stimulus strength as well as electrode placement and its effect can be tested much more easily while targeting a ...

Alternative Designs to Harness Natural Convection in Flow Batteries

A. Ansari [1], S. Kumar [1],
[1] Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India

The earlier work in our group has established that natural convection plays a dominant role in SLRFB. We used it to run a battery in which interestingly, the contents are agitated for brief spells when no current flows through it. The present work focuses on electrode configurations that harness the role of natural convection. In one such configuration, electrodes are positioned away from cell ...

Molecular Hydrogen Tracking in an Electrolytic Polishing Process

L. M. A. Ferreira [1],
[1] CERN, Geneva, Switzerland

In a water based electrolytic polishing process, the formation of molecular hydrogen at the cathode is unavoidable and it can contribute to the formation of surface defects at the anode side. This paper presents the work to model and simulate the molecular hydrogen flow inside radio frequency cavity geometries and compares it with the presence, type and relative position of certain defects in ...

CFD Analysis of a Macroscale Ultrasonic Separator

K. Chitale [1], B. Lipkens [1, 2], W. Presz, Jr. [1],
[1] FloDesign Sonics Inc., Wilbraham, MA, USA
[2] Western New England University, Springfield, MA, USA

Macroscale ultrasonic separation is a new filtration technology, with various applications such as cell clarification, cell therapy, blood-lipid separation, oil-water separation etc. These systems use piezoelectric transducers to create standing waves in fluid-particle mixture. Suspended particles get clustered by action of acoustic radiation forces and are separated out by enhanced gravity ...

Modelling of Seismoelectric Effects

B. Kröger[1], U. Yaramanci[2], and A. Kemna[1]
[1]1 University of Bonn
[2]GGA Hannover

We present the results of full-waveform time-dependent finite-element modelling of coupled seismoelectromagnetic wave propagation in fluid-saturated porous media. To describe the seismoelectric response of the system a new set of equations is developed which couple the poroelasticity theory and Maxwell’s equations via flux/force transport equations in a thermodynamical sense. The coupling ...

Finite-Element Evaluation of Thermal Response Tests Performed on U-Tube Borehole Heat Exchangers

E. Zanchini, and T. Terlizzese
[1]Dipartimento di Ingegneria Energetica, Nucleare e del Controllo Ambientale, Università di Bologna, Bologna, Italy

The results of two thermal response tests recently performed on two vertical borehole heat exchangers (BHEs) are presented. The BHEs have the same cross section and a depth of 100 m and 120 m respectively. The evaluation of the thermal properties of the ground and grout are performed by a finite-element simulation method, developed through the software package COMSOL Multiphysics 3.4.