In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
COMSOL-News-Magazine-2017
COMSOL-News-Magazine-2017-Special-edition-acoustics
COMSOL-News-Magazine-2016

Coupled PDEs with Initial Solution from Data in COMSOL Multiphysics®

M. K. Gobbert[1], X. Huang[1], S. Khuvis[1], S. Askarian[1], B. E. Peercy[1]
[1]University of Maryland - Baltimore County, Baltimore, MD, USA

This paper presents information on techniques needed in COMSOL Multiphysics® to enable computational studies of coupled systems of PDEs for time-dependent non-linear problems. Furthermore, we demonstrate how to use data files as input for initial conditions. To illustrate the techniques, we consider a system of two time-dependent non-linear PDEs from mathematical biology that couples an ...

COMSOL Multiphysics® Simulation of Flow in a Radial Flow Fixed Bed Reactor (RFBR)

A. G. Dixon [1], D. S. Polcari [1], A. D. Stolo [1], M. Tomida [1],
[1] Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

For design of radial flow fixed bed reactors, it is important to ensure proper flow distribution through the catalyst bed. A 2D axisymmetric model of a radial-flow reactor was used to evaluate flow maldistribution through the catalyst bed and the pressure drop through the reactor for a specified flow rate. Effects of different catalysts, screen sizes and flow direction were simulated. Factors ...

Understanding the Transition Flow Region through Modeling in COMSOL Multiphysics® Software

J. Sturnfield [1],
[1] Dow Chemical, Freeport, TX, USA

The pore sizes of many membranes being studied for separating the components in gas mixtures are on the scale of nanometers. Depending on the specific gases and pressures being used, this scale will put the flows in the Transition between Slip Flow and Knudsen regime. The differential flow of the gas components gives the relative diffusion of the gases through the membrane. There are a number of ...

COMSOL Implementation of a Multiphase Fluid Flow Model in Porous Media

M. Diaz-Viera, D. Lopez-Falcon, A. Moctezuma-Berthier, and A. Ortiz-Tapia
Instituto Mexicano del Petroleo, México D.F., Mexico

The aim of the present work is to implement in COMSOL Multiphysics a multiphase fluid flow model in porous media, also known in the oil reservoir engineering literature as a black oil model, using a standard finite element approach. In particular, we are interested to apply this model coupled with a multiphase, multicomponent transport model to study Enhanced Oil Recovery processes at laboratory ...

Fluid Leakage Across a Pressure Seal - new

R. P. Ruby[1], G. Kulkarni[2], U. Kanade[1]
[1]Noumenon Multiphysics Pvt. Ltd., Pune, Maharashtra, India
[2]Oneirix Engineering Laboratories Pvt. Ltd., Pune, Maharashtra, India

Seals or gaskets that are compressed between walls of a container are important to many industrial applications. In this paper we present a fluid flow model for predicting the sealing performance of such seals. A computational study using COMSOL Multiphysics® software suggests very strong simplifications to the postulated flow equations.

Simulation of Supercritical Fluid Extraction Process

P. Katiyar [1], S. Khanam [1],
[1] Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India

This paper deals with the simulation of mathematical model for supercritical extraction. Reverchon, 1996 extracted sage oil using supercritical extraction method from sage leaves at 9 MPa and 50 ᵒC. Four mean size of sage leaves ranging from 0.25 to 3.10 mm were taken for extraction with other experimental conditions and process parameters. Experimental results were fitted in the model developed ...

Modeling of Viscous Fingering

E. Holzbecher[1]

[1]Georg-August University, Göttingen, Germany

Viscous fingering is a topic of interest since the beginning of computational fluid dynamics. Here we focus on the classical constellation of miscible displacement, as it has been investigated in Hele-Shaw cells. A temperature or salinity front is entering with a fluid that has a different viscosity. The pure 1D flow is destabilized by the Saffman-Taylor instability. Using COMSOL Multiphysics® ...

Simulation of Droplet Impingement on a Solid Surface by the Level Set Method - new

J. Hu[1], R. Jia[1], K. Wan[2], X. Xiong[3]
[1]Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT, USA
[2]Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
[3]Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, USA

The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications. This paper studied the dynamic behavior of a droplet impinging onto solid dry surfaces with different surface wettability using the COMSOL Multiphysics® software. The simulation results were validated against experimental results. It was found that the Level Set method can predict the ...

Thermo-fluiddynamic Modeling of Laser Beam-Matter Interaction in Selective Laser Melting

K.-H. Leitz [1], P. Singer [1], A. Plankensteiner [1], B. Tabernig [1], H. Kestler [1], L. S. Sigl [1],
[1] Plansee SE, Reutte, Austria

Selective Laser Melting (SLM) offers great potential for future manufacturing technology. In order to extend its applicability for the processing of high melting materials like molybdenum fundamental process understanding is required. This can be obtained by multiphysical simulations that allow a look into the process. In this contribution a thermo-fluiddynamical simulation model for laser beam ...

Newtonian and Non-Newtonian Blood Flow over a Backward-Facing Step: Steady-State Simulation

M.W. Siebert[1], and P.S. Fodor[1]
[1]Physics Department, Cleveland State University, Cleveland, Ohio, USA

In this work, the fluid flow over a 2D backward-facing step is analyzed in order to provide a case study for the use of different models for the blood dynamic viscosity in COMSOL Multiphysics. Three non-Newtonian models, as well as the Newtonian model are used to study the shear stresses and the reattachment length as a function of the fluid speed. The non-Newtonian models used in this study are ...