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Single Photon Source in Quantum Optics 
▪ General idea
◦ Emits only one photon at a time (antibunched)

◦ Emitted photons are indistinguishable

◦ Example: Q-dots, crystal NV center etc.

▪ Application
◦ Quantum cryptography

◦ Quantum computation

▪ Development challenge
◦ Separate enhancement medium required

◦ Complex to fabricate and integrate 

◦ Time consuming, non-scalable process
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Quantum key distribution with single photonDifference between antibunched (SPS), coherent (laser), 
and bunched (thermal/classical) light sources

[source: https://spie.org/news/5604-efficient-single-photon-sources-with-definite-polarization?SSO=1 ]
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Goals and Challenges
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▪ Investigate particle trapping ability
- Trade off between power consumption, field strength confinement and 

particle size

𝐓𝐫𝐚𝐩𝐩𝐢𝐧𝐠 𝐩𝐨𝐭𝐞𝐧𝐭𝐢𝐚𝐥 = ∞−׬
𝐫

𝐅. 𝐝𝐫 ∝
𝐈𝐧𝐩𝐮𝐭 𝐩𝐨𝐰𝐞𝐫 ×𝐏𝐚𝐫𝐭𝐢𝐜𝐥𝐞 𝐬𝐢𝐳𝐞×𝐅𝐢𝐞𝐥𝐝 𝐠𝐫𝐚𝐝𝐢𝐞𝐧𝐭

𝐆𝐚𝐩 𝐬𝐢𝐳𝐞

(Note: The above equation only represents general dependence, not exact relation)

- Required trapping potential depth ≥ 10KBT for stable trapping

▪ Check thermal feasibility of system operation
- High excitation power→ higher plasmonic loss → High temperature rise  
(∆T)  → convective flow or thermophoretic force(big particle) acting 
oppositely→ reduces trap stability

Gradient optical force

Thermophoretic force



Simulation set up
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COMSOL Multiphysics module 
components:

i. Wave optics module
- Scattering boundary condition

- Full wave study

- Used mesh control faces 

ii. Heat transfer in Solid
- Convectional flow neglected

- Liquid considered as solid

Material choice

i. Aluminum as metal (initially used TiN)
- Smaller screen depth, more metallic

(εAl (1.55 μm)= -242+49i, δAl =  ~8 nm;

εTiN (1.55 μm)= -24+36i, δTiN =  ~21 nm)

- Thermally conductive, better heat 
dissipation

(ĸAl = 237 W/m/K ; ĸTiN = 29 W/m/K)

ii. Polystyrene as nano-particle
- Good polarizability

- Simplicity



Mode coupling with hybrid waveguide
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Power coupling efficiency
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▪Power transition gives an approximate 
idea of mode coupling strength

▪Sharp,  >10x enhancement of plasmonic 
mode power for smaller gap

▪ Insertion loss is between 30% to 50% for 
decreasing gap size (power input 8mW)

▪ Can be further optimized by tuning 
structure parameters 

Photonic 
mode

Plasmonic 
mode

Bow gap



Field induced trap for nano-particle
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Temperature profile
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Conclusion
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✓ Effective adiabatic conversion of injected photonic mode to highly confined and enhanced MIM
mode is achieved with the geometry.

✓ The confined enhancement of field creates sharp field gradient leading to stronger force (∝ 𝐸2).

✓ Capability to trap nano particles with support of ETP flow verified.

✓ Power flow transition between the distinguished modes indicative to effective emitter-waveguide
coupling.

Future schemes:

➢ Efficient power coupling with lower input power (→lower temperature)

➢ Investigation of Purcell factor and emission coupling

➢ Structural modification to accommodate additional heatsinks if required.

➢Full process implementation in COMSOL Multiphysics combining AC/DC ,Fluid mechanics along with
wave optics and heat transfer modules.



Thank you
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