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Abstract— Rich literature exists on calculation of copper 
loss in windings of high-frequency transformers and 
inductors. Most of the work was carried out in a Dowell 
approximation ignoring the windings aspect ratio and core 
presence. Calculation of losses at non-sinusoidal currents is 
made usually by summing the harmonics losses. This paper 
makes an example of an inductor with an open 
ferromagnetic core and a high winding aspect ratio. 
Simulations were performed on a COMSOL platform, both 
in frequency and time domains. The latter enable avoiding 
drudge and inaccuracy of harmonics approximation in the 
case of periodic signals and give possibility of calculating 
losses at arbitrary-shaped currents. The advantages of 
time-domain approach are distinct when the winding is 
driven by pulsed current with a low duty cycle D. Methods 
and simulation results are provided for pulsed sine, 
rectangular, triangular, and arbitrary shapes at different 
D’s. First, benchmarking was performed by comparing 
simulations in the frequency- and time-domains at purely 
sine waves. It was found that in both simulations the results 
were very close to each other, and from that, we proceeded 
to pulsed excitation. It was found that losses at pulsed sine 
waves were much higher than were those calculated in the 
frequency domain by summing the losses from up to 11 first 
harmonics. The rectangular waves generated the highest 
losses, up to tenfold of those at sine wave. It was also found 
that the ferromagnetic core increases the loss considerably 
compared to the case of an air-core inductor, which was 
confirmed experimentally. The windings resistance was 
measured with an LCR meter in a wide range of 
frequencies, up to 1MHz. In addition, adiabatic heating 
experiments were conducted with the winding driven by DC 
(for power calibration), sine, and pulsed quasi-sine waves at 
different frequencies and D’s. The experimental results 
were found in fair agreement with their theoretical 
counterparts.  
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I. INTRODUCTION 

It is well known that the winding resistance increases 
manifold at high frequency (HF). In multilayer windings, the 
increase is mainly due to proximity effect. The practical impact 
of this phenomenon has grown tremendously with the advance 
of power electronics. Papers on calculation of ac resistance 
count in many hundreds if not thousands; there are a few on the 

experimental verification of the theoretical results. As early as 
in 1989, there was felt a need in a systematization of the existing 
literature [1]. Since then, many more publications have 
appeared, some of them making use of numerical field analysis. 
Most of the work was carried out in a Dowell approximation 
[2], ignoring the windings aspect ratio and core presence. The 
analysis that had started with sine waves has been extended to 
the case of non-sinusoidal currents, mostly made with the help 
of Fourier series by summing losses from several harmonics 
(see, e.g., [3], [4], and references of [1]). It has also been 
recognized that the core and external objects can considerably 
increase copper losses [5]. Another factor compromising the 
accuracy of analytical approaches is the winding build, 
especially for the windings with high aspect ratio and curvature.  
In the latter cases, field simulations are most appropriate.  

This paper makes use of an inductor with an open 
ferromagnetic core, large winding curvature, and a high 
winding aspect ratio as a case difficult for analytical analysis. 
The winding losses were both calculated and measured for a 
wide range of frequencies and a variety of current waveforms. 
Simulations were performed on a COMSOL platform, both in 
the frequency domain (FD) and time domain (TD). The latter 
abolish drudge and inaccuracy of the harmonics’ approximation 
in the case of periodic signals and give possibility of calculating 
losses at arbitrary-shaped currents, not necessarily periodic 
ones. Understandably, some generality is lost, but many 
important insights are gained. It is argued that the TD 
simulations are a useful complement to analytical methods in 
the case of low duty cycle currents and may vie for their 
replacement owing to a wide deployment of field simulation 
packages in industry.  

 
II. THEORETICAL 

As a physical object, the inductor investigated in this report 
has 140 turns of magnet wire AWG#26 wound in five layers on 
an 8-mm-diameter, 38-mm-long ferrite slug (dc resistance 
Rdc=0.75 Ω, inductance Lൌ0.9 mH at 60 kHz; other designs 
have also been investigated but not reported here). Its 
structure, in relevant detail, is shown in Figure 1 as the 
geometry of a simulation model. (Actually, only half of the 
space was modeled owing to the symmetry in the midplane.) 
Each individual wire has a fine mesh with boundary layers 
adaptable to the simulation frequency fs=1/Ts (or the higher 
harmonics in the case of TD simulation). The core is modeled 
as a ferromagnetic object with a constant relative permeability 
μr=1000 if not stated otherwise. Core loss calculation has also 



been performed but is omitted as being out of the scope of this 
paper. We only note upfront that copper losses dominate. 

Current waveforms can be quite complex. Typically, the 
current pulses have a bipolar pulsed shape with duration τ< Ts/2 
(duty cycle D= τ/Ts/2); unipolar currents are also common. In 
some electronic circuits, e.g., rectifiers/voltage multipliers, 
currents can be asymmetric; the latter factor is ignored below.  

All simulations were performed with Magnetic Fields 
interface; loss integration in TD was done with Global ODEs 
and DAEs interface. “Events” were used to save computational 
resources at low D: time steps were small only on Events, 
namely, during pulsed current excitation. 

 

A. AC resistance Rac - FD  

1) Sine waveforms 
FD simulations are simple; they are given here only as a 

baseline for the main content, namely TD simulations. 
Normalized calculated ac resistance Rac/Rdc is plotted in 
Figure 2 along with its experimental counterpart (measured 
with a Precision Quadtech LCR meter, model 1920), and 
Dowell approximation ([2], Eq. (10)). There is a fair 
correspondence of the simulated and measured data. The 
measured values include also the core and dielectric losses; 
both should be negligible at the low drive power of the 
instrument. There is high confidence in both the simulations 
and measurements: there are no significant non-linearities nor 
unknown physics involved; copper properties are well known. 
 

 

Figure 1. Modeled geometry (axisymmetric approximation) and 
mesh (adaptable to skin depth). Yellow shows winding 
encapsulation (was needed for calculation of parasitic capacitance 
and thermal simulations, omitted in this paper).  

In the majority of the publications, the impact of the eddy 
currents (skin/proximity effects) on the increase of the copper 
losses is analyzed without accounting for the ferromagnetic 
parts. Intuitively, the core presence should enhance the field 
and increase the loss, at least, in a part of the winding. An 
identical winding, but on a dielectric former, was made to 
quantify the difference experimentally. It is illustrated by 
Figure 3, Figure 4. Note strong field at the outer turns for 
μr=1000. The simulation and experimental results match fairly 
well. 

 

 
 
Figure 2. Frequency dependence of normalized inductor 
resistance.  

 

  
 
Figure 3. Magnetic flux density, T, in the winding for μr=1 and 
μr=1000 (60 kHz, peak current Im=0.465 A). 

 
 

Figure 4. Core influence on winding losses in FD. k-core is ratio of 
ac resistance of winding on ferrite slug, Rfer, to that of winding on 
non-ferromagnetic (insulator) former, Rins: k-core= Rfer/Rins.   

 
2) Pulsed sine waveforms 

Consider, as an example, a pulsed sine waveform defined by 
the series  
 

b - μr=1000 a - μr=1 



 
(1)    

 
where k=1, 3,…, N, and D is duty cycle. Plots of (1) for D=0.2, 
0.25, 0.5 are shown in Figure 5a-c, calculated for 101 and 7 first 
harmonics, respectively. It is seen that seven harmonics are 
sufficient to approximate the pulsed wave at D=0.5 but are 
marginal for D=0.2. The total loss can be calculated by 
summing the losses from several harmonics. Paper [6], by 
treating the problem in TD, gave a direct proof of the validity 
this method (at least, for the case of a straight conducting 
cylinder). 

   
  

Figure 5. Plots of (1) for D=0.5, 0.25, and 0.201 (D=0.2 is a singular 
point) for N=101, N=7. fs=60 kHz 

B. Copper losses - TD simulations 

The goal of TD simulations is finding the loss directly in a 
winding driven by an arbitrary waveform. It could be a periodic 
waveform, which is the most important case for power 
electronics, or anything else. The practical importance is in that 
a) experimentation is not easy with HF, high-power non-sine 
waveforms; b) the winding can be driven by simulated or 
experimental current waveforms, so the simulation can yield 
“true” results.  

The same mesh was used for both FD and TD simulations.  
In TD, the winding was driven for several periods by either sine 
(for the direct comparison to FD simulations) or non-sine 
waveforms.  

To validate TD simulations, several variables were computed 
for a number of frequencies in both FD and TD for a sine 
current with the same amplitude Im=0.465 A, by the same 
procedure. A comparison of these variables, including the 
copper losses, showed that the TD simulation was set correctly. 

 
1) Excitation function approximated by Fourier series - 

half-sine wave pulsed excitation 
Pulsed sine waveforms were composed from 11 harmonics 

using (1) with some damping for better convergence. Sample 
waveforms are shown in Figure 6 (see also Figure 5). The 
winding loss was calculated as 
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where n can be any integer, and Qrh=’resistive losses’ is a 
COMSOL variable. The simulation was run up to 5Ts (n=4), but 

it became clear that two periods were sufficient for attaining 
good accuracy. Thus, in all the results below, n=1 if not stated 
otherwise.   

The current through a strand (computed by integration of the 
current density phi-component, Jphi, over the wire cross-
section) for several D’s is shown in Figure 6. It is seen that even 
11 harmonics do not bring the current amplitude to 0.465 A at 
small D’s. A comparison of losses at sine wave, Psine, to losses 
Psine(D) at pulsed wave is shown in Table 1 for several 
frequencies. The results were close to those found by 
summation of losses from several harmonics in FD, which 
promoted confidence in TD simulation for such coils. Yet, it 
became evident that the Fourier series does not work well for 
small D’s. 

2) Excitation function inputted directly 
Yet the next step was forgoing the Fourier series in favor of 

“drawing” a pulsed function directly (realized by specifying a 
piecewise function in COMSOL for idealized waveforms). This 
resolves the problem of approximation at small D’s, where a 
large number of harmonics needs to be called for; it also makes 
easy excitation by arbitrary waveforms.  
 
Table 1. Comparison of losses at sine wave, Psine, to losses 
Psine(D) at pulsed sine wave, for several frequencies.  

fs (kHz) Psine(D)/Psine  
D=0.99 D=0.5 D=0.25 D=0.201 

40 0.980 1.190 1.553 1.631 
60 0.981 1.201 1.433 1.444 

200 0.974 0.772 0.641 0.594 

 

 
 

Figure 6. Current through the wire (computed by integration of 
Jphi over cross-section). 

a) Half-sine wave pulsed excitation (D<1)   
A summary graph of the ratio of losses at excitation by a 

pulsed half-sine wave (D<1; see an example Figure 7) to those 
at a sine wave (D=1), Ppulsed/Psine, is shown in Figure 8. For this 
specific inductor, the said ratio peaks up to ൎ1.8 at 40-60 kHz 
and D=0.1-0.2, which is much higher than that determined in 
both FD and TD simulations based on Fourier series for small 
D’s. This is explained by the disregard of high harmonics in 
waveforms composed by (1). Note that at very low fs, 
Ppulsed/Psine tends to D. Obviously, this happens because the 
heating is proportional to the rms value: eddy currents are 
insignificant. There is a similar tendency at very high fs: 
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skin/proximity effects are so strong that the current is 
concentrated on the wire perimeter anyway. The total loss 
grows as ඥ𝑓𝑠 (by fs, high harmonics are also meant here), but 
is proportional to I2, as seen from the following formula for the 
loss, Pskin, at strong skin effect [7]   

 

where γ is copper conductivity, μ0 is vacuum permeability, and 
H is magnetic field that is proportional to the current. 

 
b) Rectangular pulsed excitation (PWM square wave)   

One would expect, intuitively, that owing mainly to a larger 
harmonic content, a rectangular wave (see an example Figure 
9) would produce higher losses compared to a half-sine wave 
pulsed excitation with the same D. According to the simulation 
results, this is indeed the case, as seen from Figure 10. It appears 
that sharp transitions are conducive to a very steep rise in loss, 
tenfold at 20-40 kHz; higher rms value is secondary.  

 

 
 

Figure 7. Pulsed sine inductor current at D=0.2, 100 kHz. Three 
first legends are currents through three different strands 
(computed by integration of Jphi over cross-section), fourth is 
excitation, all normalized to amplitude. Note that all traces are 
indistinguishable, which is evidence of high accuracy.  

 
 

Figure 8. Frequency dependence of the ratio of losses Ppulsed/Psine at 
pulsed excitation by a half-sine wave (D<1) to those at sine wave 
(D=1). Ppulsed≡ Psine(D). 

 
Figure 9. Winding excited by pulsed rectangular wave (D=0.2). See 
legends’ explanation in Figure 7.  

Square waves are, probably, an idealized case, not 
encountered in practice at HF; the transitions are smoothed by 
natural reasons.  

 
c) Triangular wave pulsed excitation (D<1)   

By a similar logic, one would expect that a triangular wave 
(see an example in Figure 11) would induce lower losses than a 
rectangular one. A frequency dependence of the ratios of losses 
Ptriang(D)/Psine and Ptriang(D)/Psine(D) at pulsed excitation by a 
triangular PWM wave for several D’s shown in Figure 12 is in 
line with this intuitive thinking. In fact, in most combinations, 
the losses at sine wave are higher than at triangular ones, the 
exception being the frequency range of ~20-70 kHz. At pulsed 
excitation, the pulsed sine wave invariably generates higher 
losses than its triangular counterpart does. 

 

 
Figure 10. Frequency dependence of the ratio of losses Prect(D)/Psine 
and Prect(D)/Psine(D) at pulsed excitation by a rectangular PWM 
wave (D<1). 
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Figure 11. Winding excited by pulsed triangular wave (D=0.2). See 
legends’ explanation in Figure 7. 

 
 

 
 

Figure 12. Frequency dependence of the ratio of losses 
Ptriang(D)/Psine and Ptriang(D)/Psine(D) at pulsed excitation by a 
triangular PWM wave (D<1). 

d) Arbitrary wave excitation 
COMSOL allows importing waveforms from other 

applications (e.g., experimental waveforms from a digital 
scope, PSpice waveforms, etc.; txt and csv formats are most 
convenient). Special care should be taken to denoise the 
waveforms by removing frequencies of no interest, especially 
bit fluctuations. Otherwise, the simulator follows all 
insignificant variations, and simulation time becomes 
unreasonably long without bringing any additional value.   

Figure 13 shows an example of simulation with the driving 
current reproducing the experimental waveform Figure 14. 
Experimental methods and results of this particular simulation 
will be discussed in the next Section. 

 
       

Figure 13. Winding excited by pulsed “sine” wave (Dൎ0.4) Figure 
14. See legends’ explanation in Figure 7. 

 
 

Figure 14. Experimental waveforms in one of the adiabatic heating 
experiments. Ch1=Power Amplifier input); Ch2=inductor voltage, 
600 V/div; Ch3=inductor current, 0.9 A/div, Pearson 2877 (pink). 
Horizontal 5 μs/div. 60 kHz. 

III. EXPERIMENTAL - ADIABATIC HEATING  
Experimental determination of losses at arbitrary HF currents 

and high ratio of L/R is difficult on several counts. First, there 
is the power generation aspect. A common way of generating 
high HF current is amplifying the desired waveform with an RF 
power amplifier (PA). Since an inductance current is an integral 
of the applied voltage, the input waveform should be a 
derivative of the desired current. A real inductor requires more 
tailoring—as an example, see the PA input, ch1, Figure 14. The 
necessity to operate at HV does not help. The inductor voltage 
can be estimated as 𝑉 ൌ 2𝜋𝑓௦𝐿𝐼. For the inductor in question, 
at I=2 A, fs=200 kHz, V=2.26 kV (compare to the blue trace 
ch2 Figure 14). Thus, a wide-band matching transformer is 
mandatory for most PAs (we used a 1 kW, 20 kHz-400 kHz PA, 
model 1000S04 by Electronics & Innovation; the matching 
transformer was workshop-made).  

D=0.2 

a 

b 



Second, accurate electrical measurement of losses at several 
watts is problematic because the reactive power is three orders 
of magnitude higher. This is why we opted for thermal methods, 
namely adiabatic heating, where heating curves at unknown 
power generated by an arbitrary mechanism can be compared 
to calibration curves obtained at a known power. Alternatively, 
certain scenario, e.g., heating by sine wave, can serve as a 
baseline, and other scenarios can be judged against it.  

An impregnated inductor was thermally insulated with a 
thick foam plastic. One thermocouple was placed on top of the 
winding, another attached to the core, close to the winding. 
First, calibration runs were made with a DC power supply. It 
became clear that thermal insulation was far from ideal, so low 
power heating, below ൎ5 W, deviated strongly from the 
adiabatic one. The inductor heat capacity derived from both the 
experiment and COMSOL simulations is Cpൎ25 J/K.  

The inductor was heated by an approximately pulsed sine 
current with a fixed amplitude, at different fs and D’s, the latter 
varied from unity (sine wave), as the basis, down to 
approximately D=0.2. Lower D’s were not realized because of 
an excessively high voltage needed to drive the inductor. Heat 
insulation was identical for all runs. Because the waveforms are 
not “clean”, D-values cited below (estimated for the inductor 
current, ch3) are rather approximate, if not arbitrary. Time was 
counted to heating from 40 oC to 80 oC; it is denoted as t40-80. 
Absolute power can be conveniently estimated using Cp: 

 𝑃 ൌ
஼೛∆்

௧రబషఴబ
, from which the winding resistance, neglecting core 

and insulation losses, is Rac=2P/Im
2. For an instance of the 

experiment Figure 15, sine wave, P=8 W, and Rac=4 Ω, or 
Racൎ5.3Rdc (compare to Figure 2). 

 

 
 

Figure 15. Adiabatic heating by current Im=2 A at 60 kHz. Solid 
lines – sine wave, dotted lines – pulsed wave Figure 14.  

Since the interval t40-80 is inversely proportional to the loss 
(assuming adiabatic process), a higher-accuracy comparison 
can be made between power losses at different scenarios. As an 
example, power, in arbitrary units, is tabulated in Table 2 for 
60 kHz, where the basis, P=1 au, is assigned to D=1. The 
subscripts “exp” and “coms” in Table 2 relate to the 
experimental and COMSOL data, respectively, whereas the 
latter are described in Sect. II.B.2)d) (the winding was driven 
by denoised experimental waveforms). 

 
Table 2. Experimental data on inductor heating at 60 kHz 
compared with COMSOL simulations Sect. II.B.2)d) (in 
simulations, winding was driven by experimental waveforms). 

Im (A) Irms (A) D t40-80 (s) Pexp (au) Pcoms (au) remark 

1.5 1.045 1 263 1 1  

1.5 0.802 0.5 154 1.71 1.41  

1.5 0.596 0.3 180 1.46 1.45  

2 1.38 1 125 1 1  

2 0.798 0.3 83 1.5 1.36 Figure 14 

 
It is seen that the pulsed current heats up the inductor faster 

than the corresponding sine wave does. The experimentally 
found loss increase is typically somewhat larger than that 
predicted theoretically for both the idealized pulsed sine waves 
(Table 1, Figure 8) and experimental waveforms. The 
discrepancy can be attributed to at least three factors: heating 
the surroundings (non-adiabatic heating), added core loss, and 
higher content of high harmonics compared to idealized 
waveforms. The first factor would dominate at low power. 
Indeed, if the losses were low enough, 80 oC would never be 
reached: the ratio P(au) would become infinity. It is important 
to note that in all tests, the wire was much hotter than the core; 
winding losses dominated. 

This section illustrates the problem complexity, and 
difficulty of experimental investigation. If in doubt, there is a 
need of scrutiny, probably, not envisaged at lower frequencies.  

 
IV. CONCLUSIONS 

We have demonstrated convenience and power of TD 
simulations in the case of pulsed currents, above all, at low D, 
compared to summing losses for multiple harmonics. This 
method stands out if real, complex current waveforms are 
known. It was shown that at the same frequency and amplitude, 
pulsed currents induce usually much higher winding losses than 
sine currents. This effect is pronounced at pulsed sine, and 
especially square waves, being much mitigated at triangular 
shapes.  

It was also shown that the core presence has strong influence 
on the magnetic field, increasing the losses manifold compared 
to an air-core design.  

An experimental investigation comprised Rac measurement 
with an LCR meter (sine wave, low power) and high-current 
adiabatic heating experiments with sine and pulsed waveforms. 
Both confirmed fair accuracy of the field simulations, and a 
significant loss increase at pulsed excitation. The developed 
methods were expanded to Litz-wound inductors. This work 
will be reported later. 
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