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Abstract:  COMSOL is used for obtaining the 
quantum mechanics wavefunction {Ψn(x,y,z,t)} as 
a solution to the time dependent Dirac equations 
while determining the effect of a preexisting 
electromagnetic traveling wave (represented by a 
combined magnetic vector potential Ā field and 
scalar electric potential φ field) on the propagating 
wavefunction. The probability evaluation of a 
particle being at a spatial point can be treated by 
the “wavefunction formulation” and is employed 
herein because it involves solving field PDEs, thus 
is directly adaptable to COMSOL. 
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1. Introduction 

The paper illustrates the use of COMSOL for 
obtaining the quantum mechanics wavefunction 
{Ψn(x,y,z,t)} (representing matter waves) as a 
solution to the time dependent Dirac equations. 
These equations are employed in particle physics 
and historically provided the first combined 
application of quantum mechanics and relativity 
theory by introducing a four component 
wavefunction {Ψn}, n=1,..4. Historically, {Ψn} 
described the behavior of fermion type particles 
(e.g., electrons) and further predicted the existence 
of antiparticles (e.g., positrons) even before they 
were observed experimentally. COMSOL® Usage: 
the General-Form PDE "time dependent" study is 
employed. Archive Refs. [1-4] solve for Quantum 
Mechanics Dirac wavefunctions; however, this is 
the first COMSOL application towards solving the 
time dependent Dirac equations for particles in the 
presence of a preexisting traveling electromagnetic 
wave field. It is an extension of Ref.[4] that treated 
solutions in the presence of either a preexisting 
static electric field alone or magnetic field alone. 

2. Governing Equations/Theory  

Governing equations for the behavior of a free 
fermion particle of mass m in the presence of a 
magnetic and electric field, are represented by the 

time dependent quantum mechanics Dirac 
equations (with wavefunctions {Ψn(x,y,z,t)} as the 
dependent variables) and are given by Ref.[5]: 

where m=particle mass, c= light speed , e=particle 
charge, ℏ =h/(2π), (h is Planck’s constant), i=√(-1) 

Equations(2) relate the normalized vector potential Ā 
and scalar potential Φ to the normalized vector magnetic B̄  
field and electric Ē field ( Ā & φ are unnormalized). 

2.1 Two-D  time dependent form 
A 2-D form of  governing Eqs.(1) are solved 

for in time dependent problems using the 
COMSOL MULTIPHYSICS® General-Form PDE 
"Time dependent" studies option. Two dimensional 
solutions are sought where the wavefunction 
depends on spatial coordinates x,y. Thus setting Az=0  
and letting Ψn gradients in the z direction drop out, 
leads to the 2-D form of Eqs.(1) which are the 
following pair of pde’s Eqs.(4a-b) and pair Eqs.(5a-b). 
In Eqs.(4a-b) and Eqs.(5a-b), nice sized quantities 
are experienced during the computation process, 
by using primed non-dimensional independent variables 
and corresponding PDE parameters, as defined by  
Eqs.(3). The selection of scale values for {T,L} is 



treated later in 2.3. The Eqs.(4a-b) in terms of 
{Ψ1(x′,y′,t′),Ψ4(x′,y′,t′)} are uncoupled from the 

Eqs.(5a-b) that are in terms of {Ψ2,Ψ3}. Except 
for the M′ sign, Eq.(4a) is just like Eq.(5a) and Eq.
(4b) is just like Eq.(5b) where Ψ1↔Ψ3 & 
Ψ4↔Ψ2 .Thus the solution procedure for solving 

Eqs.(4a-b) are just like solving Eqs.(5a-b), thus we 
focus on solving {Ψ1(x′,y′,t′),Ψ4(x′,y′,t′)}. 

2.2 Governing equations in presence of 
combined electric potential Φʹ field and 
magnetic Ā′  field 

The al ternate second order form of 
simultaneous Eqs.(4a-b) is given as Eqs.(7a-b) and 
has shown to be computationally robust, where the 

Ci, Ĉi coefficients are in terms of the known 
electric and magnetic potentials, namely: 

The Eq.(7a) is obtained by first summing -i∂/
∂y′ of Eq.(4b) + ∂/∂x′ of Eq.(4b) and then using 
Eq.(4a) to eliminate the [ ∂Ψ4/∂x′ -i∂Ψ4 /∂y′ ] term 

in that sum. Next the remaining ∂Ψ4′/∂t′ coupling 
term is eliminated using Eq.(4b). Equation (7b) is 
obtained by similarly operating on Eq.(4a) and 
using Eq.(4a) to eliminate the ∂Ψ1′/∂t′ term.  

Alternate Eqs.(7a-b) have some advantages 
over Eqs.(4a-b), namely: a) the underlying wave 
propagation nature of these equations is evident 
via the embedded classical wave equation 
appearing in the first three terms, b) they appeared 
more computationally stable over long time 
integration histories, c) ease of applying normal 
derivative boundary conditions (e.g. those found in 
zero gradient boundary conditions or in  absorbing 
boundary BC’s), and d) unlike Eqs.(4a-b) these 
equations are uncoupled when the potentials are 
not present ( Φ′=0, Ā′=0), where then, each one 
takes on the form of the relativistic Klein-Gordon Equation. 

Local Steady State PDE for Ψ1′: The local 
PDE (i.e. temporarily holding independent variables 
{x′=x′, y′=y′, t′=t′} constant in the Ci(x′,y′,t′), 
Ĉi(x′,y′,t′) coefficients in Eqs.(7a-b) ) for the Ψ1 
wavefunction will be useful in predetermining the 
effect of the Φʹ and Ā′ potentials on an otherwise 
propagating free field Dirac wavefunction. 
Substituting Eqs.(8) into Eqs.(7a-b) (where 

Ci(x′,y′,t′), Ĉi(x′,y′,t′) are locally held constant) 
and after eliminating the ψ4 in Eq.(7a) by using Eq.
(4b), the following local uncoupled steady state 
Eq.(9) PDE is obtained for ψ1 : 

The first two terms in Eq.(9) are the Helmholtz 
equation where the k′s2 term corresponds to the 

wave number squared and λ′s(x′,y′,t′) corresponds  
to the wave length at local point (x′,y′,t′) . Note that 
the second of Eqs.(10) reduces to the freely 
propagating Dirac wavenumber k′D2  when the EM 
potentials are turned off. Equation (9) is not solved 
herein, but rather is used establish the k′s2 term 
which is used for the following reasons; (1) help 
select the strength of the EM field later on, (2) 
establish the influence of Ci coefficients relative to 
the squared freely propagating Dirac wave number 
k′D2 and (3) for harmonically driven problems, 
obtain an estimate of the Ψ1 spatial wave length 



via Eq.(11), for FEM mesh size selection. Carpet 
plots of Eq.(11) over the integration spacial 
domain (x′,y′) for a fixed, t′ shows where finer 
meshes are likely needed. 
Φ′, Ā′ potential selection for EM wave in +y′ 

direction : A  plane EM wave traveling in the +y′ 
direction has scalar and vector potentials given by 
Eqs.(12a-b) Ref.[6]:  

which correspond (via Eqs.(2) ) to the constant 
amplitude electric and magnetic field vectors: 

where x0′ is the offset distance defining the start of 
the ΕΜ field. The primed EM wave frequency ῶ′  is 
selected as η fraction of the driver frequency ω′ via 
the 3d Eq.(13c). The corresponding k̃′ EM wave 
number is from the 4th  Eq.(13c) .  
Φ′, Ā′ potential selection for EM wave in +x′ 

direction : For a plane EM wave traveling in the 
+x′, interchange x′ & y′ in Eqs.(12a-b) (also 
interchange x′ & y′ component subscripts in Eqs.(12b). 

The size of Eʹ0 is selected large enough to feel the 
influence of the ΕΜ field on Ψ1(x′,y′,t′) yet small 
enough to allow the wavefunction solution to 
continue on as a propagating wave by comparing 
term sizes in the local steady state wave number 
squared k′s2. Next substitute Eqs.(12a-b) into Eq.
(10) and keeping the two leading terms gives: 

where via Eq.(15), the size of Eʹ0 is made relative to 
an αΕ fraction of (k′D )2 . For example in the later 
Fig.(3) model, selecting αΕ = .00477, the Eq.(16) 
2nd term is .40 compared to 1 after the wave travels 
5 waves into the EM field thus resulting a shorter 
wave length relative to the λD free field Dirac PW . 
The Eq.(16) Cos( ) ±1 variations cause k′s2 to be 
bigger or smaller than (k′D )2  resulting in a  smaller 
or bigger λ′s wavelength compared to the λ′D wavelength 
which in turn affects the required FEM mesh size. 

2.3 Selection of drive frequency ω and non-
dimensionalization  parameters {T,L}  

 Frequency selection: De Broglie’s photon-to-
particle extension of Planck’s relation between 
particle energy Ep and angular frequency ω (i.e. 
Ep=ℏω ), along with the relativistic relation 
between Ep and velocity [5], Ep=mc2/√(1-β2), gives 
Eq.(17) for selecting the  frequency in terms of the 
particle velocity vp via the speed parameter β=vp/c . 

Non-dimensionalization {T,L} selection: The 
scale of QM is such that the numerical size of both 
time and space variables are extremely small in 
CGS units. Equations (4a-b), in the non-
dimensional prime variables, are valid for any unit 
consistent values of {T,L}, however a convenient 
choice is to use the time period Tp and wave length 
λD of a propagating Dirac Equation plane wave (in 
the absence of EM fields). The size of all of the 
primed variables in the FEM models (both in 
model building, solving, and post processing) are 
then nice size numbers. Unprimed Eq.(18) 
represents the SS (steady state) wavefunctions 

where the SS exact solution to unprimed Eqs.(4a-
b), for a PW of frequency ω, traveling in the +x 
dir., is given by Ref.[5] : 

where A is an arbitrary constant. Therefore after 
selecting driver frequency ω, the following scale 
values for {T,L} are defined by: 

3. Method 

A bounded EM traveling wave is embedded in 
a larger domain where the startup zone has a zero 
EM field. This is accomplished by applying 
COMSOL’s “STEP functions” (with gradual cubic 
∫ shaped rise) to the Eʹ0 terms (via A ′ and Φ′) that 
appear in Eqs.(4a-b and Eqs.(7a-d). The Dirac 
equations are solved in the time domain by driving 
an upfield face of a model (that is initially at a zero 
wavefunction state) with exp(-iω′t′) harmonic 
loadings, and then track the transient waves that 
propagate towards the downfield end of the model. 



3.1 FEM Boundary Conditions 
3.1.1 FEM Wave Generation Driven Surface: 

transient solutions are generated by driving the 
upfield surfaces with time harmonic loadings of the form: 

where f(t′) is a gradual time increasing  multiplier 
on the harmonic driver and ψn(x′s,y′s) is the 
wavefunction distribution (from a free field PW or 
CylW ) at surface points {x′s,y′s }. This gradual 
increase is to help minimize any suddenly applied 
loading effects (see Ref.[4] for f(t′) formula). The 
f(t′) exponentially increases from ε0  to 1.0 over Nc 
time cycles. The Ψ1 input driver, using ε0 =.05 and 
Nc =6, is shown in Fig.(1a) (Ψ4 is a similar shape). 
In Fig.(1b), the FFT of the real part of the Ψ1 driver 
shows a dominant primed frequency at f′ =1.0 . 

Figure 1. FEM Wave Generation Driver (Ψ1) 

3.1.2 FEM Model Termination Surfaces: 
(i) absorbing BC : not used here; the computations are 

halted just before the wave meets the outer boundary. 
(ii) zero value BC : this is used down field of the 

propagation at the outer boundary points 
{xb′,yb′}of the model, namely Ψn(xb′,yb′,t′) =0 

(iii)  normal gradient BC: normal grad. 
•∇Ψn(x′b,y′b,t′)=0, @ surface points {xb′,yb′}, 
where  is a surface unit normal vector and is 
used with Eqs.(7a-b) at wave guide transverse cuts. 

3.2 FEM Initial Conditions 
The FEM model is started from rest throughout 

the entire spatial domain 𝒟, therefore: 

It is noted that because of the manner Eq.(22) 
is constructed, evaluating it at t′=0 is consistent 
with Eqs.(23) for both Ψn(x′s,y′s,0) and ∂Ψn(x′s,y′s,0)/∂t′. 

3.3 Probability Density Computation 
The probability density  ρ (x′,y′,t′) is defined as 

the probability per unit area of the particle being at 
a particular spatial point {x′,y′}, and is given  by  
Eq.(24) Ref.[5]. 

3.4 Model Parameters 
The primed physical parameters in the PDEs 

coefficients Eqs.(7c-d) (M′, c′, Eʹ0, ῶ′) are governed 
by the previously defined {β, αE, η} ratios. 

4. EM Traveling wave  Potential Φ  ́, Ā  ́  Field  Results 

The basic building blocks of the Dirac theory 
are freely propagating matter waves such as   
planar ones. Exact validation solutions to these 
wave propagation problems (when the time & 
spatial varying  Φʹ, Ā  ́potentials are present) are 
not generally possible, even for simple 1-D 
propagation. Instead COMSOL comparisons to the 
same problem solved by alternate FEM code (e.g. 
Mathematica™) is made. 

4.1 Bar Plane Wave Guide in η→0 EM Field 
4.1.1 {Ψ1,Ψ4} FEM Model Solution Eʹ0 < 0 : 

A W′xL′=.4x18 FEM 2-D  bar (Fig.(2b) inset) is 
driven on the upfield end surface by a uniform 
loading( with A=1) via Eq.(19) into Eq.(22) (e.g. Fig.(1) 
driver @ Nc=6) while using the 3.4 model parameters. 

Figure 2. {Ψ1,Ψ4} PW Passes Thru Eʹ0 < 0 EM Field 

Unlike the Ref.[4] static electric or magnetic fields 
that varied with only one spatial coordinate, here 
the Eqs.(12a-b) vary with both (x′,y′) thus not 
allowing simple PW solutions. Therefore we start 
with the simplest situation where the traveling EM 
spatial wave length is extremely long (take limit 
η→0, thus ῶ′ →0 and k′̃ →0 and Cos(k̃ ′y′-ῶ′t′) 
→1) so that we can get a simple PW in the x′ 
direction . The limit is taken after substituting Eqs.
(12a-b) into Eqs.(7c-d). The downfield surface is 
terminated with zero (ii) BC and wave guide 
transverse surfaces use a (iii) n̄•∇̄ψn(x′s,y′s)=0 BC . 
The FEM model consist of three zones: (a) startup  
free field zone where Eʹ0 =0 ; (b) downfield core 

⃗n

⃗n



zone where electric field Eʹ0 = constant; and (c) 
transition zones where Eʹ0 gradually increases 
between the (a↔b) zones. This is accomplished by  
multiplying Eʹ0 in Eqs.(7a-b) (i.e. after the Eqs.
(12a-b) have been substituted into Eqs.(7c-d) ) by 
s(x′-xʹo)*Eʹ0 where s( ) is the appropriately shifted 
COMSOL built in step function with cubic ∫ 
shaped transition zones. The inset in Fig.(2b) 
shows the resulting s*Eʹ0  electric field, where dark 
navy blue is the free field zone, red is the constant 
central core and the rainbow colors in-between 
show the transition zone. A shift value of x′o =1 is 
used, which defines the starting point of the 
electric field  ∫  transition. The Eqs.(7a-b) are 
solved in COMSOL using the General-Form PDE 
"time dependent” module. The Fig.(2) solutions are 
at a time snapshot t′=12 and the relevant β, αΕ , η  
parameters are labeled on each plot item. Figure (2c) 
illustrates the rise of the probability density ρ with Eʹ0 
turned on vs off. The Figs.(2d-e) show the  growth of 
the individual Ψ1(x′),Ψ4(x′) functions where an 
increasing wavelength vs x′ is observed and cross 
comparison to a Mathematica FEM solution is good. 
Figure (2a) is a plot of the Eq.(11) centerline 
wavelength estimate plot. The local half wave length 
estimate (e.g. using Eq.(11) evaluated @ mid point 
x′=5.7 between nulls) is approximated with λ′s /2 =.78 as 
compared to the Fig.(2d) 0.77 graphical measurement. 
. 

4.1.2 {Ψ1,Ψ4} FEM Model Solution Eʹ0 > 0 : 
The same Fig.(2) model is solved except here Eʹ0 > 0 

Figure 3.  {Ψ1,Ψ4} PW Passes Thru Eʹ0 > 0 EM Field  

& L′=35, where the Electric field component is in 
the same direction as the Dirac wave propagation. 
The Figs.(3d-e) show plots of the Ψ1(x′),Ψ4(x′) 
functions where a decreasing wavelength vs x′ is 

observed and the Fig.(3c) ρ vs x′ cross comparison to 
Mathematica FEM solution is good. Figure (3a) is a 
plot of the Eq.(11) centerline wavelength estimate. 
The local half wave length estimate (e.g. using Eq.
(11) evaluated @ the mid point x′=17.2 between 
nulls) is approximated with λ′s/2 =.336 as compared 
to the Fig.(3d) 0.334 graphical measurement. 

4.2 Simulated PW Thru η>0 EM Field 
In lieu of a true PW solution, consider a 

cylindrical like wave forming after a source is 
emitted through a slit  in an initially EM free zone 
surrounding the slit and then encounters a 
transverse traveling η>0 EM wave ( Eqs.(13a-b) ) 
as shown in Fig.(4a). The electric field value s(r′-
r′o)*Eʹ0 is turned on gradually by multiplying it by 
the COMSOL ∫ transition step function s( ), with a 
radial coordinate argument. The slit openings are 
uniformly driven with the same driver used in the 
4.1 bar models. The computed slit centerline Ψ1(x′)  

Figure 4.  reΨ1 vs x′ for ClyWave Thru EM Field 

function is plotted vs x′ @ t′=37 after applying a 
multiplying factor of √(x′-xs′) to remove the 
cylindrical spreading, thus simulating a PW 
propagation scenario. The λ′s vs (x′,y′) carpet plot 
insets illustrate where the EM field is likely to 
alter the free field Dirac waves  in the absence of 
an EM field. For example comparing the dotted 
zone in Fig.(4a) to the dotted zone in Fig.(4d) inset 
shows the correspondence between the EM altered Ψ1 
(x′,y′) field and λ′s field . The Fig.(4c-f) plots illustrate 
the effect of the EM η traveling wave frequency 
parameter on reΨ1 (x′,y′) response @ fixed t′=37, as it 



is swept through values η={0, .6/16, 3/16, 6/16}. 
The λ′s vs (x′,y′) inset carpet plots give a sense of 
the of how the PDE coefficients are being altered 
by the EM field. Figure (5) keeps the model parameters 
β=0.75, η=.6/16 the same and examines the effect of varying 
the EM  wave {+y′ or +x′ } dir. & ± αE  parameter on  |Ψ1| . 
:  

Figure 5.  |Ψ1| vs x′,y′ for ClyWave From Slit Thru EM Field 

4.2 Disk Cylindrical Wave Thru EM Field 
A (R′o-R′i)xΘ = (16-4)x360º FEM 2-D  annular 

region (e.g. Fig.(6a)) is driven at the inner surface with  

Figure 6. CylW {Ψ1,Ψ4}  Passes Thru     É0 > 0 EM  Field 

Eq.(22) while using the Eq.(25) Ref.[2] freely 
propagating cylindrical Dirac wave (in {r′,θ} cylindrical 
coordinates @ r′=R′i ) for the ψn amplitudes and using 
the labeled β, αΕ and η  model parameters.The gradual 
É 0 buildup is accomplished by multiplying É 0 in Eqs.(7c-d) 

with s(r′-r′o)*É 0 (e.g., Fig.(6e) ). Figures (6a-b) give a “Eʹx 
off” comparison between the Eq.(25) reΨ4 exact 
analytical SS limit solution and the Eqs.(7a-b) COMSOL 
transient solution. Figure (6c) plots Eq.(11) and illustrates 
how distortions in the Fig.(6d) Eʹx “EM field on” solution, 
corresponds to the Fig.(6c) λ′s distortions represented by 
the dotted A & B comparison zones. Thus pre-solution 
plots of the λ′s(x′,y′,t′) field gives an idea of where finer 
mesh zones may be needed before actually making the 
FEM computer runs. Figures (7a-d) show the Ψ1,Ψ4 
solutions vs x′ for line cuts at y′=0 @ t′=18. With “EM off,” 
Fig. (7a) shows an exact SS reΨ1 compared to COMSOL’s 
reΨ1 for both a step time input (Nc=0) and tapered input 
(Nc=6) where  agreement is good between the SS exact and  

Figure 7. Ψ1,Ψ4 vs x′ @  y′=0 at Fig.(6) Section  Cuts 

FEM solutions. Figure (7b) compares the COMSOL 
and Mathematica FEM solutions with “EM off” and 
Nc=0 . Figures (c-d) compare the COMSOL “EM 
on” vs “EM off” for reΨ1  and for reΨ4 .  

4.3 Two Slit Interference in EM Field 
A 2-D 42x21 rectangular FEM model consist 

of 2 slits of aperture  A′p=0.5 and separation P′=5.0 
that are embedded in a  baffle as shown in the Fig.
(8a) “slit detail” inset. A (ii) zero value BC is 
used on the downfield surfaces (solutions are 
terminated before Ψn reaches these outer 
boundaries). It is assumed that the probability 
of the particle appearing on the back slit wall 
is negligible so the (ii) zero value BC is also 
used there. The media consist of an existing Eqs.



(12a-b) in line electric field bounded upfield by a  
circular sector of free field in vacuo media that just 
encloses the slits as shown in Fig.(8b) inset. Like 
the  previous example, the electric field value s(r′-
r′o)*Eʹ0 is turned on gradually by multiplying it 

Figure 8. Time History: reΨ1 in EM Field Thru 2 Slits 

by the COMSOL ∫ transition step function with a 
radial argument (e.g. Fig.(8b) inset). The slit 

Figure 9. Interference Bands: ρ in EM Field Thru 2 Slits 

openings are uniformly driven with the same 
driver used in the Fig.(5) one slit model. The 

reΨ1(x′,y′,t′) time history evolvement for an inline 
Eʹx orientation at four time labeled snapshots, is 
shown respectively in Figs.(8a-d).  The classical 
interference spokes are formed , but get distorted by 
the EM field. The ρ probability density field, @ 
t′=37.5 with the EM field turned on in Figs.(9abd) vs 
off in Fig.(9c), is displayed in upper half of each 
quadrant of Fig.(9). The “ Eʹx off ” straight spoke 
interference patterns of Fig.(9c) are in contrast to the 
curved spoke interference patterns of Figs.(9abd) . 
Figure (9b) “in line Eʹx” compared to Fig.(9d) 

“transverse Eʹy ” illustrates the effect of the EM wave 
orientation on the spoke pattern. The lower half of each 
quadrant in Fig.(9a-d) display line plots (at cuts A-A, B-B, C-
C and D-D), which shows  interference with EM on vs off. 

6. Concluding Remarks 

COMSOL successfully solved simultaneous 
PDEs with spatial and temporal varying 
coefficients of the type encountered in solving 
Dirac equations in the presence of a preexisting 
EM traveling wave. There is good agreement 
between COMSOL and alternate reference FEM 
solutions for a long spatial EM wave length 
relative to the propagating Dirac wavefunction 
wavelength in a PW waveguide. The free-field 
Dirac wavefunction tends to be distorted in zones 
where the k′s2 (x′,y′,t′) (i.e., the Eq.(11) local 
steady state PDE coefficient) deviates from the free 
field wave number squared k′D2 (actually we track  
the related λ′s =re(2π/√ k′s2 ). Solutions to the 
incident harmonic wavefunction upon a two slit 
barrier entering the EM field, produced curved 
(rather than straight) c interference band patterns. 
This paper supersedes the one on file at the time of 
the Oct. 7, 2020 conference week proceedings. 
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