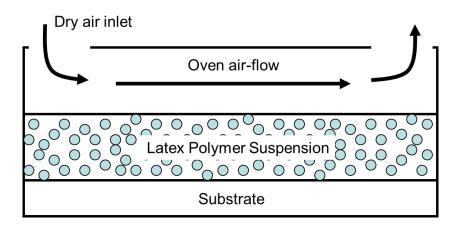
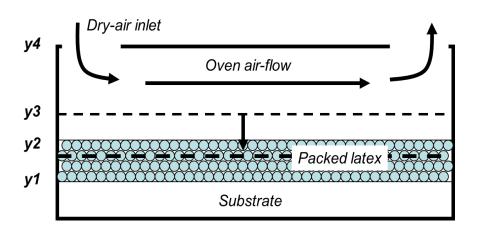
Presented at the 2011 COMSOL Conference

Watching Paint Dry: A 2D Model of Latex Film Formation

- William T. Vetterling
 - Zink Imaging


> Introduction

- At ZINK Imaging, we make a coated color-imaging medium, and some layers used latex as a binder
- Latex is a general name for a suspension of a water-insoluble polymer, commonly used as a binder for paint and other water-based coatings.
- As the suspension dries, the polymer particles become packed into an array, and if it is above the MFFT (minimum film forming temperature) the polymer particles will coalesce..
- If the particles coalesce before the water is removed, the coating can become permanently tacky
- Question: What is the best drying schedule for smooth layers but highest possible speed?



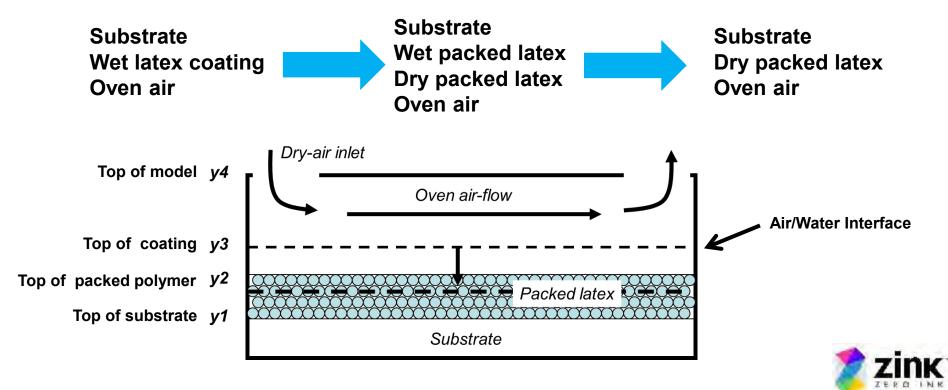
> Introduction

Stage 1 – The wet coating begins drying at a rate similar to pure water

Stage 2 -- When sufficient water is removed, the particles touch, and form a porous matrix. The air/water matrix then recedes into this matrix

Stage 3 --- The polymer particles coalesce to form a smooth film.

> Multiphysics


Problem requires:

- Thermal Model: Oven air warms the water, but is cooled by evaporation at air/water interface
- Fluid dynamics: Air flow adapts to changing interface shape and carries away water vapor
- Dilute species transport: Water vapor escapes by diffusion through packed latex and by diffusion and advection in the air.

> Complications

- Most of the physics occurs at the air/water interface, which is a moving boundary.
 This requires moving mesh.
- However, this boundary is initially above the latex but ends up below it. The topology changes. Three layers become four layers and then three again.

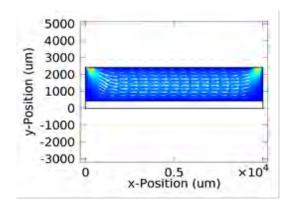
> Approach

- Rather than dealing with these complications, we tried a different method.
- Approach
 - All layers are treated as being porous.
 - Air layer has porosity of 100%.
 - Latex layer has a fill-factor that increases in time until it reaches 74% (close-packed spheres) and then stays constant.
 - Substrate has porosity of 0%.
- Porous material has properties that depend on position and time.
 - Example: k=mat1.def.k11*(y >= y1) + mat4.def.k11*(y < y1)
 - Where: k = thermal conductivity, y1 = surface of substrate, mat1 = polymer, mat4 = substrate.
- Moving mesh has a single internal boundary, the air/water interface.

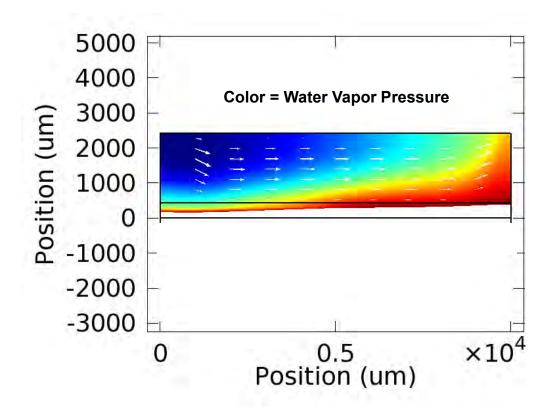
> Assessment

There are both positive and negative features to this approach.

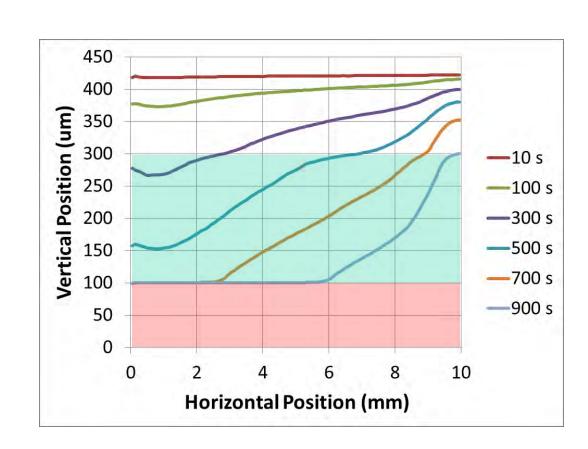
Pros:


- The moving mesh issues are highly simplified.
- The topology problem is removed.

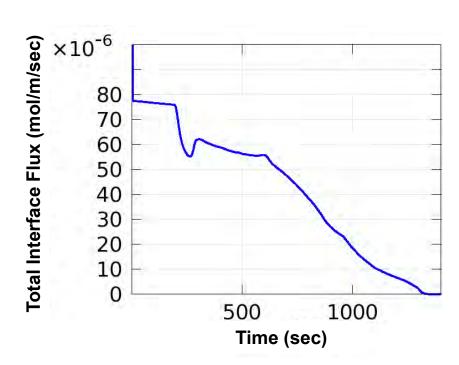
Cons:


- The geometry does not show the material boundaries, because they are embedded in the expressions for material properties. (Use your imagination!)
- The expressions for material properties are more complicated (though not as much as you might think).
- Boundary conditions are potentially trickier.

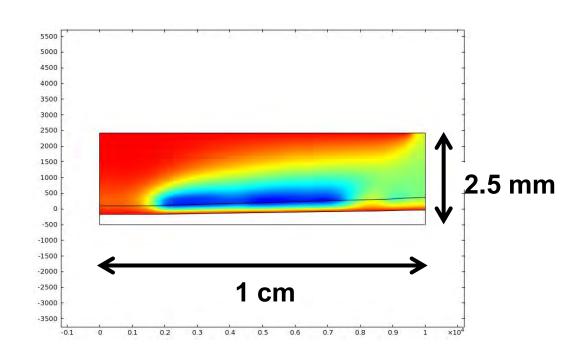
> Sample Results


- Dry air enters at the upper left and leaves at the upper right.
- Drying is from left to right, as shown by the profile in the air/water interface.

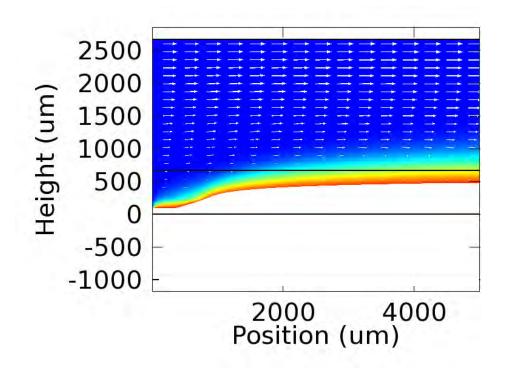
> Air/Water interface profile


- The air/water interface profile can be seen more clearly in this graph.
- The substrate surface is at y=100 um (red area)
- The top of the packed latex is y = 305 um, where several of the graphs show a slight inflection. (blue area)
- In this simulation, T = 295 K and the air velocity is 2 m/sec

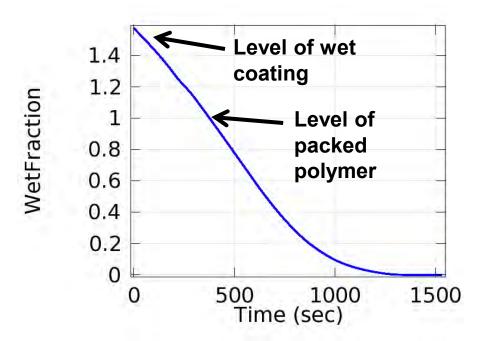
> Time Sequence of Drying


- This graph shows the total flux of water vapor across the air/water interface as a function of time.
- From t=0 sec to t ~ 200 sec, the water evaporates at a constant rate, like pure water.
- At t~200 sec, the latex is packed at the left hand end, and the air/water interface is entering the pack.
- By t~600 sec, most of the latex is packed, and further evaporation is through the interstices.
- Evaporation continues until t ~ 1400 sec, when the air/water interface reaches the substrate.

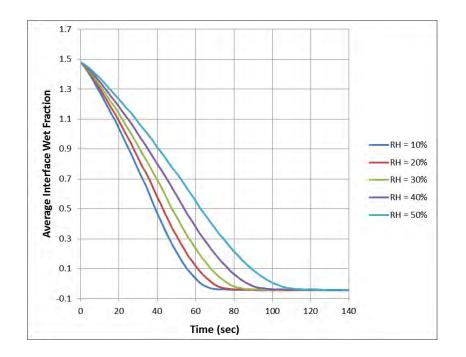
> Temperature profile

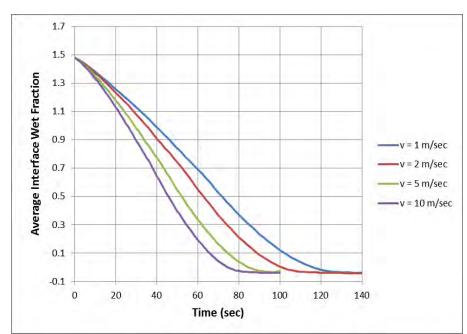

- Water evaporation causes the temperature to fall, so a temperature profile reveals where the water is evaporating
- This is a profile at t = 600 sec.
 for a film that dried in 1200 sec.
- Minimum temperatures (shown in blue) occur in the center of the film, and are working their way towards the right.
- Oven temperature T_oven shows up in red.

> Drying in laminar air-stream


- We have also made a model in which the air enters on the left and leaves on the right.
- The proved much more difficult because the boundary condition on the left is applied to a boundary which is changing in length and in material properties.
- The packed latex layer does not show up in the geometry, but as time proceeds, the incoming air runs into it.

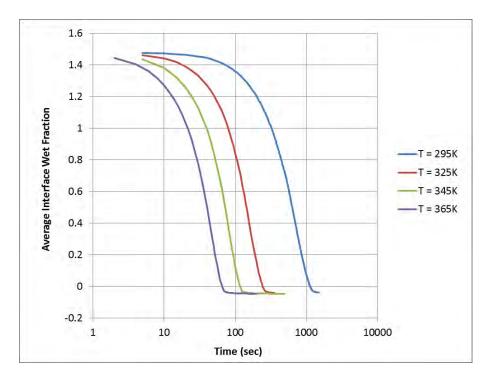
> Average wet fraction

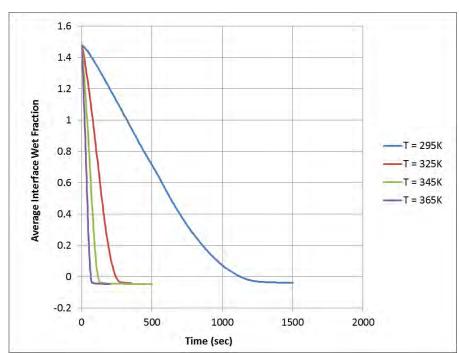

- Average wet-fraction at the interface is a good probe of the mean level of the air-water interface.
- Wet-fraction = (Level of Air/Water Interface)/(Height of packed polymer)
- Rate of evaporation ∞ (1-F), where F = Fill-factor
- Movement of interface per unit loss of water ∞ 1/(1-F)
- Therefore, to lowest order, the speed of interface motion is independent of F.

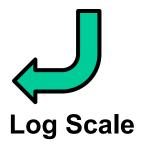


> Evaporation vs. RH and air speed

- Length = 5 mm
- T = 345 K
- v = 2 m/sec (Air speed)

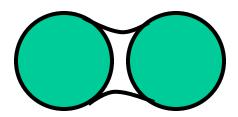

- Length = 5 mm
- T = 345 K
- RH = 50 %



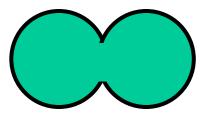


> Evaporation vs. air temperature

- v = 2 m/sec (Air Speed)
- RH = 50 %
- Length = 5 mm



> Next steps


Add model of coalescence

 At final stage of drying, latex particles are pulled together by capillary force of water bridges. Overcomes latex stabilization forces.

Wet Sintering

When particles merge and water dries, their own surface tension pulls them together

Dry Sintering

 A model that computes the viscous flow of a unit cell of the latex pack could give the fill-factor as a function of time. The viscosity is temperature dependent.

> Detail

Dry Sintering – Frenkel (J. Phys. (USSR) *9*, 385,1943)

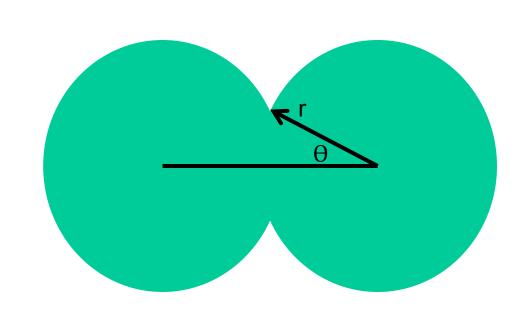
$$\Theta = \frac{3\gamma t}{2\pi\eta r}$$

 γ = Surface Tension

 η = Polymer Viscosity

r = Particle radius

t = time


Williams, Landel and Ferry Eqn: (J. Amer. Chem. Soc. 77, 3701, 1955)

$$\ln(\eta) = 27.6 - \frac{40.2(T - T_g)}{51.6[K] + (T - T_g)}$$

 η = Viscosity in Pa-s

 T_g = Glass transition temperature in deg K

T = Temperature in deg K

> Conclusion

- We have made a 2D model of latex drying. The model is simplified by treating all materials as "porous".
- Results have been obtained for two types for dryer
 - Spraying dry air from a slot
 - Laminar flow of dry air
- The models reveal an air/water interface profile that moves in the direction of air-flow
- Preliminary results have been obtained for the effects of:
 - Temperature
 - RH
 - Air speed
 - Sample length
- Future work will include the coalescence of the polymer

