Analysis Of Linearly Polarized Modes

Author Ioana Moldovean (Avram) ${ }^{1}$, Author B. Ioan Gavril Tarnovan ${ }^{*, 2}$ Author C. Bogdan Tebrean ${ }^{*, 3}$
${ }^{1}$ Author A. The Technical University Of Cluj-Napoca, ${ }^{2}$ Author B. The Technical University Of Cluj-Napoca ${ }^{3}$ Author C. The Technical University Of Cluj-Napoca
*Corresponding author: 28, Memorandumului str, 400114, Cluj-Napoca, Romania, Ioana.AVRAM@mas.utcluj.ro

Abstract

This paper presents a study on the propagation modes of e lectromagnetic w aves through as tep index fiber optics. Obtaining the pr opagation m odest oge $t t$ heir characterization ac cording to the radial and azimuthal distribution is bym odifying t he characteristics of th efib er. T hiss tudy is required for further investigation of states of polarization and analysis of electric fie ld distribution using high frequency conditions.

Keywords: waveguide, propagation, mode.

1. Introduction

This paper is an analysis of the propagation mode of step index fiber optic.
Currently, the propagation beam method is widely used to study the propagation of light. There are three version of beam propagation method (BPM). The first BMP is based on the fast Fourier transform, the second is based on finite difference method and the third is based on the finite element method. [5][3]
For t he an alyses described int hisp aper, a system based on the finite element method has been used - the third method described earlier. The an alysis o f Ma xwell's eq uation is a resulting a relation between el ectric field and magnetic field, which condition the appearance and propagation of an electromagnetic field in the formo fel ectromagnetic waves. T he propagation field is shown in figure 1. [6]

Fig. 1 Propagation of the electric and magnetic field [Adapted from 6]

2 Basic equations

To determine t he pr opagation modes of electromagnetic waves the phenomenon of the total r efraction at t he i nterference oft wo
mediums with different r efractive in dices has been u sed. This p henomenon is go verned by Snell's law [6] [7]
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
Where n_{1} and n_{2} represent the refractive index of t he medium in which 1 ight propagates, θ_{l} and θ_{2} represent t he a ngle o fi ncidence, respectively the angle of refraction.
According to the c ondition at t he boun dary between co re an d cl adding, the in tensity o f electric and magnetic field can be determined. [7]
A 3-D optical waveguide has been considered, as figure 1 , where x a nd y ar et ransverse directions and z represents the propagation direction. [4]
The b asic e quation $a t t$ he b eginning of the analysis is the wave equation. [3]
$\nabla^{2} E+\nabla\left(\frac{\nabla \varepsilon_{r}}{\varepsilon_{r}} \cdot E\right)+k^{2} E=0$
Considering a monochromatic w ave w ith the pulsation ω and the constant of propagation β, the phase can be written as:

$$
\begin{equation*}
f=\omega t-\beta z \tag{3}
\end{equation*}
$$

The equation of the electric field becomes
$\vec{E}(x, y, z, t)=\vec{E}(x, y) e^{j(\omega t-\beta z)}$
and the equation of the magnetic field becomes $\vec{H}(x, y, z, t)=\vec{H}(x, y) e^{j(\omega t-\beta z)} \quad$ (5) [10]
The vector wave eq uations of electric a nd magnetic f ields canber educed t ot he Helmholtz's equation, i fth e relative permeability is constant in the medium. [7]

$$
\begin{align*}
& \nabla^{2} H+n^{2} k_{0}^{2} H=0 \tag{6}\\
& \nabla^{2} E+k^{2} E=0 \tag{7}
\end{align*}
$$

The Helmholtz's equation for the electric field can be summarized as [7]

$$
\begin{align*}
& \nabla_{\perp}^{2} E+\left(k^{2}-\beta^{2}\right) E=0 \tag{8}\\
& \text { or } \\
& \nabla_{\perp}^{2} E+k_{0}^{2}\left(\varepsilon_{r}-n_{e f f}^{2}\right) E=0 \tag{9}
\end{align*}
$$

For t he magnetic filed, t he equation can be written as follows:
$\nabla_{\perp}^{2} H+\left(k^{2}-\beta^{2}\right) H=0$
or
$\nabla_{\perp}^{2} H+k_{0}^{2}\left(\varepsilon_{r}-n_{e f f}^{2}\right) H=0$
Where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
The optical waveguide has a uniform structure along the z d irection. [7] T his c ondition is respected by the following relation:
$\frac{\partial}{\partial z}=-j \beta$
where β the propagation constant, and z is the propagation direction.
$k_{0}=\frac{2 \pi}{\lambda_{0}}$
k_{0} represents the free s pace wave number in vacuum.
The ratio of propagation constant β to the wave number in vacuum k_{0} represents the ef fective refractive index. [7]

$$
\begin{equation*}
n_{e f f}=\frac{\beta}{k_{0}} \tag{15}
\end{equation*}
$$

If t he λ_{0} is t he wavelength $i n$ va cuum t he propagation constant becomes: [7]
$\beta=\frac{2 \pi}{\lambda_{0}} n_{e f f}=\frac{2 \pi}{\lambda_{\text {eff }}}$
where $\lambda_{\text {eff }}=\frac{\lambda}{n_{\text {eff }}}$
The propagation constant represents the phase rotation per unit propagation distances, and the effective i ndex $n_{\text {eff }}$ represents the ratio of the wavelength in the medium to the wavelength in a vacuum. [7]
The eigenvalue of the equation for the magnetic field H is obtained by derivation of Helmholtz's equation. [2]
$\nabla \times\left(n^{-2} \nabla \times H\right)-k_{0}^{2} H=0$
Where ∇ is the Laplace o perator an d Helmholtz's equation c an b es olved for the eigenvalue
$\lambda=-j \beta$
β represents the propagation constant along the axis z
The eigenvalue corresponds to the propagation constant itself. [4]

3. The analysis of the propagation of electromagnetic field

To analyze the propagation of electromagnetic field, a s imulation i nC omsol 4.0 h as be en made with two optical fibers. The optical fiber has the core of $8 \mu \mathrm{~m}$, or 50 and $62.5 \mu \mathrm{~m}$. All three types of fiber have $125 \mu \mathrm{~m}$ coating. The
fiber co re is m ade of pure s ilica, whose refractive i ndex i s 1.4457 . The c ladding i s made by silica, with a refractive index of 1.4378. For the phenomenon of total reflection to o ccur, the c oating in dex m ust b e s maller than the core index.[2]

$$
\begin{equation*}
n_{2}>n_{1} \tag{20}
\end{equation*}
$$

Because t he r efractive i ndex oft he co re is higher than t he r efractive index o f the cladding, the optical field is confined to the core. [7]
Obtaining the propagation modes can be done in the Comsol 4.0 application by changing the refractive index of the core, changing the core size, changing the wavelength or setting a specific eigenvalue.
To obtain the propagation mode, on the radial direction no flow of e nergy should e xist. [2] Fort hist oo ccur, t he wave h as t ob e evanescentint he r adial direction in t he cladding, but not in the core. [2] To obtain this condition, t he C omsol p ackage defines the effective r efractive i ndex, a st he following equation.

$$
\begin{equation*}
n_{2}<n_{\text {eff }}<n_{1} \tag{21}
\end{equation*}
$$

To i nvestigate t he pr opagation modes, a section was made through the xy plane of the fiber. The wave will propagate along the fiber with the pulsation ω and propagation constant β [2].
Effective refractive index can be assigned for each p ropagation modes, a ccording to the phase velocity. [9]
$V=\frac{2 \pi a}{\lambda_{0}} \sqrt{n_{1}^{2}-n_{2}^{2}}=k_{0} a \sqrt{n_{1}^{2}-n_{2}^{2}}$
V determines the number of t he pr opagation modes in the waveguide a nd is related to the propagation of electromagnetic field in the guide. [6]
If $V \gg 1$ the propagation mode can be solved with o ptical geometric calculations, int his case the guides are multimode guides with the following parameters $\Delta=0.01 \div 0.03, d=20$ $\div 100 \mu \mathrm{~m}$
If $V \cong 1 \mathrm{t}$ he pr opagation mode is in s ingle mode, a nd t he specific parameters have t he values: $\Delta=0.003 \div 0.01, d=4 \div 10 \mu \mathrm{~m}[11]$
The difference between the refractive index of the core and the cladding is very small, about 1% [7]. T his approximation simplifies the analysis, so the modes obtained are called linearly polarized modes, notated $\mathrm{LP}_{\mathrm{nm}}$. [7]. N and m represents t he n umber ofradial an d azimuthal zeros for each mode. [7]

The optical g uides are g enerally used t o transmit pulses, which are dispersed. The value of the di spersion de termines the transmission rate of the guide. It is essential that the pulses do noto verlap, b ecause of errors in transmission. [8]

4. Comsol modeling

For the electromagnetic wave p ropagation analysis, we used two optical fibers. The first has $8 \mu \mathrm{~m}$ core, the second has $50 \mu \mathrm{~m}$ cores, having a coat of $125 \mu \mathrm{~m}$. The finite e lement mesh is shown in figure 2 , f or b oth fiber optics.

Fig. 2 Finite element mesh for single mode and multimode fiber optic
The boundary conditions are:
$\varepsilon_{r}=n^{2}$
$\mu_{r}=1$
$\sigma=0$,
$\lambda=-j \beta-\delta_{z}$
The classification of linearly p olarized modes is made after the radial and azimuthal angle.

The f ollowing figures a re r elated t ot he classification of linearly p olarized modes for single mode fiber optic and the distribution of electric and magnetic field

Fig 3. Fundamental mode

Fig. $4 \mathrm{LP}_{02}$ mode

Fig. $5 \mathrm{LP}_{01}$ Electric transverse mode

Fig. 6 Magnetic transverse mode
Classification and distribution of linearly modes of e lectric f ield f or m ultimode f iber optic

Fig. $7 \mathrm{LP}_{01}, \mathrm{LP}_{11}, \mathrm{LP}_{21}$

Fig. $8 \mathrm{LP}_{61}, \mathrm{LP}_{71}, \mathrm{LP}_{81}$

Fig. $9 \mathrm{LP}_{12}, \mathrm{LP}_{32}, \mathrm{LP}_{42}$

Fig. $10 \mathrm{LP}_{52}, \mathrm{LP}_{62}, \mathrm{LP}_{72}$

Fig. 11LP $_{13}, \mathrm{LP}_{23}, \mathrm{LP}_{23}$
Another s tudy was d one b y simulating t he wave pr opagation t hrough a n optical f iber using a c ross section. A t wo-steps study w as developed u sing a $n i$ mplemented C omsol application. The first is Mode analysis and the second st ep i s Eigenvalue. T o obtain on e fundamentally mode through the whole section a wavelength of $2 \mu \mathrm{~m}$ has b een u sed, t he desired n umber of modes being 20 a nd t he eigenvalue is 35 .

Fig. 12 The 3-D optical fiber

Fig. 13 The electrical field distribution through the optical fiber. One fundamental mode

Changing the characteristics of the fiber can be obtained another linearly polarized modes and also may get a different distribution a long the fiber of fundamental mode.

Fig.14. The electrical field d istribution. T hree fundamental modes.

Fig. 15 Line graph for electric field distribution along the z axis

The propagation of electromagnetic wave was achieved by a cross section of a curved optical fiber. The fiber has a $50 \mu \mathrm{~m}$ core and $125 \mu \mathrm{~m}$ cladding. The refractive indexes are the same, 1.4457 f or t he c ore a nd 1.4378 f or t he cladding. This study contain the same steps as the la st s tudy, with the d ifference t hat the eigenvalue was es tablished 2 an dt he wavelength $1.55 \mu \mathrm{~m}$

Fig. 16 The mesh for the multimode curved optical fiber

Fig. 17 The electric field distribution thought the curved optical fiber. One fundamental linearly polarized mode

In this figure the linearly polarized mode is the fundamental m ode. If t he e ffective r efractive index or the ei genvalue was changed through the optical fiber more fundamental modes will appear.

Fig. 18 The electric field distribution thought the curved optical fiber. Six fundamental linearly polarized modes

Simulation of the optical fiber j unction was made at a wavelength of $2.2 \mu \mathrm{~m}$. T he s tudy used consists of the step mode analyses and the step eigenvalue. The searching of eigenvalues was around 2.

Fig.19. The mesh of optical fiber junction

Fig 20. First step of electrical field distribution along z axis

Fig. 21 The second step of electric field distribution along the axis z

Fig. 22 The third step of propagation along the z axis
Following the simulations it can be seen that the d istribution a nd the intensity of e lectric field is id entical o $n b$ oth s ides f or th e fundamental m ode. Changing t he characteristics of the fiber changes the linearly polarized m odes an $d t$ he symmetrical distribution along the fiber.

5. Conclusions

According to the s imulation t hrough t he single-mode fiber, the wave is tr ansmitted in one way, without the ap pearance of modal noise. Through the multimode fiber c an pa ss more light waves, but each with its p articular linearly polarized mode.
These simulations will bed eveloped t o simulate Faraday Effect.

6. References

1. Comsol Multiphysics RF Module -Users Guide
2. Comsol Multiphysics RF Module - Model Library
3. Introduction to O ptical W aveguide Analysis: S olving Maxwell's E quation a nd Schrödinger E quation. K enjiK awano, Tsutomu Kitoh.. Copyright ©2001 John Wiley \& S ons I nc, I SBNs: 0 -471-40634-1 (Hardback); 0-471-22160-0 (Electronic)
4. Sergey V P olstayanko, J im-Fa Lee H1 (curl) Tangential Vector Finite Element
5. Ysuhide Tsuji, Masanori Koshiba -Finite Element Beam Propagation Method for Three Dimensional O ptical W aveguide S tructures Method f or M odeling Anisotropic O ptical Fibers
6. www.fiberoptics4sale.com/wordpress/basic-optics-for-optical-fiber/
7.http://www.physics.pub.ro/Cursuri/Niculae Puscas - Optica integrata si materiale _optice - Curs/cap 3.pdf
8.http://www.plasma.uaic.ro/ro/downloads /doc_download/142-foc 9.http://www.rp-photonics.com/refractive _index.html
10.http://www.scritube.com/stiinta/fizica/ ECUATIILE-LUI-MAXWELL-PROPAGAR 24262.php
$11 \mathrm{http}: / /$ solid.fizica.unibuc.ro/cursuri/opto /ghiduri.pdf

7. Acknowledgements

This pa per was s upported $b y t h e ~ p r o j e c t$ "Improvement of the doctoral studies quality in engineering s cience for d evelopment o $f t$ he knowledge based society-QDOC" contract no. POSDRU/107/1.5/S/78534, p roject co-funded by t he E uropean S ocial F und t hrough t he Sectorial O perational P rogram H uman Resources 2007-2013.

This paper w as s upported - conference fees, research equipment and m aterials- by CNCSIS-UEFISCSU re search grant P NII IDEI 2008, code 180, contract 616/2009

