

COMSOL CONFERENCE 2019 BANGALORE

Numerical Simulation of Melt Hydrodynamics in Laser Micro-Processing using COMSOL Multiphysics®

Shashank Sharma Prof. J. Ramkumar Prof. S. A. Ramakrishna

Dept. of Mechanical Engineering, IIT Kanpur Dept. of Physics, IIT Kanpur

Laser Does Manufacturing Matters?

70% Manufacturing share of global Trade

16 % Manufacturing share in Golbal GDP

- \$726 Billions Trade surplus of advance economies in innovative goods
- Iaser processing market to grow from USD 6.40
 Billion in 2015 to USD 9.75 Billion by 2022, at a CAGR of 6.13% from 2016 to 2022

The laser processing market in APAC is expected to hold the largest share during the forecast period. India is expected to grow at 19% CAGR to €1 billion by 2020.

Manufacturing, value added (% of GDP, India)

Source: World Bank (OECD National Accounts data files)

<17 % Manufacturing share in Indian GDP (3rd largest Economy)

India's share of global manufacturing value added is ~2%

\$138 Billions Trade deficit

Target: 25 % Manufacturing share in Indian GDP (Make in India)

Pictorial rpresentation of Laser processing Applications in Auto industry

Laser Welding of Differential gears, case hardened steel, Laser power 4kW; image source: https://automotivemanufacturingsolutions.com/wpcontent/uploads/2013/12/AMSI_2013_Andrey_Andreev.pdf

Laser Welded Solenoid used in cars

Image source: https://www.twiglobal.com/tech nical-

C02 Laser welding of gear component

Lap joint in 1.6mm thick 5754 aluminum alloy sheet welded at 5m/min with CO 2 laser

Laser joining for fabricating car

This axle component found on a Mercedes C Class sedan was laser hybrid welded at 177 IPM (4.5 m/min.) with a wire feed rate of 235

IPM (6.0 m/min.) Image source. https://www.thefabricator.com/article/laserwelding/a-look-at-laser-

hybrid-welding-in-the-automotive-industry.

© 2019 Laser Processing Lab ,IIT Kanpur, India

 $50\,\mu m$ convex dome in steel

 $100\,\mu m$ holes in steel

Fiber Laser cut nitinol stent [Baumeister et al.]

Laser micro polishing © 2019 Laser Processing Lab ,IIT Kanpur, India

LST regular micro-surface structure in the form of micro-dimples [Etsion et. al.]

fabricated micro pin array on tungsten [Park et. al.]

 ${\sim}80\,\mu m$ hole drilled through a 600 μm Ti sheet

2 mm

laser-fired contact processed with 260 W laser power, 30 µs pulse length and 70 µm dia. [Raghavan et. al.]

[Benoit Rosa et. al.]

Research Spectrum of Laser micro-sacle Processing of metals

Limitations of Laser Material processing

•Melt shadowing effect in Laser-drilling.

- Melt-induced recast layer and surface roughness in laser drilling.
- Humping phenomenon in micro laser welding, for micro joining.
- Porosity, Waviness and melt ripples in welded structure.
 Surface over melting in micro polishing and structuring of metals.

Understanding Melt Pool Convection: Water waves analogy

Laser-matter interaction

Key parameters

1

4

Laser intensity

The order of intensity dictates the mechanism of interaction.

Low intensity- melting. High intensity- melting and vaporization.

Evaporative Heat flux

With vaporization, cooling of

subsequent melted surface

dependent melt dynamics.

resulting in temperature

Pulse duration

Influences the thermal penetration which in turn affects melt depth, heat affected zone area.

Recoil Pressure

Normal pressure by receeding vapor on melt surface, responisble of melt layer deformation.

Thermo-capillary forces

With the genesis of thermal gradients, marangoni force starts to act on melt surface, producing perturbation over a thin melt layer.

Surface Tension

Another normal force which balances recoil pressure during heating and responsible for retraction of melt during cooling.

Numerical Simulation

Laser Absorption

• Multiple reflections of laser beam is ignored.

 \bullet Fresnel Absorption implemented, where $\theta_{\rm i}$ is angle of incidence which depends upon surface curvature.

Laser Heating

Heat Transfer module, with temperature dependent thermo-physical properties i.e. ρ(T), κ(T), Cp(T).
Phase change.
Radiation loss.

- •Ambient heat transfer.
- •Evaporative heat loss.

Melt Pool Convection

• Laminar Flow module, with temperature dependent thermo-physical properties i.e. $\rho(T)$, $\mu(T)$, $\sigma(T)$.

•Natural Convection.

•Marangoni Convection (temperature gradient & concentration gradient).

• Vaporization Induced Recoil pressure

• Free Surface (effects of surface tension).

Numerical Simulation

Heat transfer + Laminar Flow

Governing Equations

$$\begin{split} \rho C_p^{eq} \left[\frac{\partial T}{\partial t} + \vec{\nabla} \cdot (\vec{u} \ T) \right] &= \vec{\nabla} \cdot \left(k \ \vec{\nabla} T \right) \\ \rho \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot (\vec{\nabla} \cdot \vec{u}) \right) \\ &= \vec{\nabla} \cdot \left[-pI + \mu \left(\vec{\nabla} \vec{u} + \left(\vec{\nabla} \cdot \vec{u} \right)^T \right) \right] + \rho \vec{g} - \rho_l \beta (T - T_m) \vec{g} \end{split}$$

 $\vec{\nabla} \cdot \vec{u} = 0$

Boundary Conditions

$$\begin{split} &Q_{taser} \\ &= 2.5\cos(\theta)\,\alpha(\theta)\,f(t)\,\frac{p}{\pi r_o^2} \Big[\frac{-((x)-vel*t)^2 - (y)^2}{r_o^2}\Big] \,\,\delta(\emptyset) \\ &Q_{tosses} = -qevap - h[T - T_{amb}] - \varepsilon\sigma[T^4 - T_{amb}^4]\,\delta(\emptyset) \\ &qevap = M_v \times L_v \\ &M_v = \sqrt{\frac{m}{2\pi k_b T_s}} \times P_{sat}(T_s) \times (1 - \beta_r) \\ &P_{sat}(T_s) = P_{atm} \times exp\left(\frac{M_a L_v}{R} \left(\frac{1}{T_v} - \frac{1}{T_s}\right)\right) \\ &P_{recoil} = \begin{cases} P_{amb}, \ 0 \le T_s < T_c \\ \frac{1 + \beta_r}{2} \times P_{sat}(T_s), \ T_s \ge T_c \end{cases} \,\,\delta(\emptyset) \\ &\vec{F} = -(P_{recoil} - P_{amb})\vec{n} + \sigma(\vec{\nabla}_s \cdot \vec{n})\vec{n} - \vec{\nabla}_s\sigma \end{split}$$

Mathematics Module : Moving Interface

$$n_{i} \cdot ((P_{1} - P_{2})I - \mu_{1}(\nabla u_{1} - (\nabla u_{1})^{T}) + \mu_{2}(\nabla u_{2} - (\nabla u_{2})^{T})) = \mu_{1} >> \mu_{2}, \text{ pressure jump at interface } P_{2} - P_{1} = P_{recoil}$$

$$n_{i} \cdot (\mu(\nabla u - (\nabla u)^{T}) = -P_{recoil}n_{i} + \sigma(\nabla_{s} \cdot n_{i})n_{i} - \nabla_{s}\sigma$$

$$\sigma = \sigma_{m} - \gamma_{pm}(T - T_{m}) - R_{g}T\Gamma_{s}\ln(1 + k_{1}a_{i}e^{-\frac{\Delta H_{o}}{R_{g}T}})$$

$$\frac{d\sigma}{dT} = -\gamma_{pm} - R_{g}T\Gamma_{s}\ln(1 + Ka_{i}) - \frac{Ka_{i}}{1 + Ka_{i}}\frac{\Gamma_{s}\Delta H_{o}}{T}$$

Level-set

$$\begin{split} & \frac{\partial \phi}{\partial t} + \underline{\vec{u} \cdot \vec{\nabla} \phi} + \gamma \vec{\nabla} \cdot \left[\phi (1 - \phi) \frac{\vec{\nabla} \phi}{|\vec{\nabla} \phi|} - \varepsilon \vec{\nabla} \phi \right] = 0 \\ & S_{cont} = \delta(\phi) \ M_v \left(\frac{\rho_l - \rho}{\rho^2} \right) \\ & S_{ls} = \delta(\phi) \ M_v \left(\frac{\phi}{\rho_l} + \frac{1 - \phi}{\rho_v} \right) \end{split}$$

Phase-field

$$\begin{aligned} \frac{\partial \phi}{\partial t} + u \cdot \nabla \phi &= \nabla \cdot \frac{\gamma \lambda}{\varepsilon^2} \nabla \psi \\ \psi &= -\nabla \cdot \varepsilon^2 \nabla \phi + (\phi^2 - 1) \phi \\ \delta &= 6 |\phi(1 - \phi)| |\nabla \phi| \\ \nabla \cdot \vec{u} &= \delta * (M_v * (\frac{\rho_l - \rho}{\rho^2})) \end{aligned}$$

$$\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi - \delta * (M_v * (\frac{\rho_l - \rho}{\rho^2})) = \nabla \cdot \frac{\gamma \lambda}{\varepsilon^2} \nabla \psi$$

$$T_{j}) = \sigma(\nabla_{s} \cdot n_{i})n_{i} - \nabla_{s}\sigma$$

$$\frac{\partial \vec{X}}{\partial t} \cdot \vec{n} = \vec{u}$$

Mesh Smoothening Type Hyperelastic

Yeoh

Mesh size must be comparable to deformation at each time step

Fully coupled solver

Alternative to ALE

- Extreme Topological Changes
- Suitable for melt expulsion regime
- Interface aberration occurs during vaporization dominant regime with realistic values of surface tension

Alternative to ALE

•Extreme Topological Changes

 Suitable for vaporization dominant regime with realistic values of surface tension

Meshing

- Interface thickness
- Mesh size must resolve moving interface

Segregated solver $\delta(\emptyset) \rightarrow T \rightarrow U$

Numerical Simulation of Melt Hydrodynamics in Laser drilling

Pulse width 1 ms

Radius:- 100 µm

Reprate 10Hz Material: Ti

Numerical Simulation of Melt Hydrodynamics in Laser drilling

Transient melt pool dynamics in laser drilling, Fluence = 3J/cm2, at 20 ns irradiation time.

Laser Surface texturing: Micro hump conundrum

Transient Melt Pool Hydrodynamics

Radial distance (µm)

Qualitative comparison of surface topography for P=70W, dia=73 μ m. (a) SEM micrograph (top view) (b) SEM micro graph (tilted view) (c) 270° revolute profile of simulated melt geometry at t=0.1 ms (d) t=0.4 ms.

Laser Surface texturing: Bump to crater transition

P= 100W, 0.1 ms, Ti6AIV4 , $\frac{\partial \gamma}{\partial T} = -2.8 \times 10^{-4}$ N/(m*K)

Melt Hydrodynamics in Conduction mode Laser

$$\frac{\partial \Gamma_i}{\partial t} + \nabla_{\!\!S}(\Gamma_i \overrightarrow{u_s}) = \nabla_{\!\!S}^2 \Gamma_i + S_i$$

$$S_{i} = \beta_{i}^{\prime} C_{s,i} \left(\Gamma_{\infty,i} - \Gamma_{i} - \sum_{j} \Gamma_{j} \frac{\Gamma_{\infty,i}}{\Gamma_{\infty,j}} \right) - \alpha_{i}^{\prime} \Gamma_{i}, \qquad j \ge 2.$$
$$C_{i} = \frac{\alpha_{i}^{\prime}}{\beta_{i}^{\prime}} \left(\frac{\Gamma_{i}}{\Gamma_{\infty,i} - \Gamma_{i} - \sum_{j} \Gamma_{j} \frac{\Gamma_{\infty,i}}{\Gamma_{\infty,j}}} \right) \qquad a_{i,var,cor}^{\prime} = C_{i} p_{i}^{\prime} f_{i}$$

$$\left(\frac{\partial\sigma}{\partial T}\right)_{multi} = \sum_{i} -A_{\sigma,i} - RT \ln(1 + K'_{seg,i}a'_i) - \frac{K'_{seg,i}a'_i}{1 + K'_{seg,i}a'_i} \frac{\Gamma'_{\omega,i}\Delta H^o_i}{T}$$

Melt Hydrodynamics in Keyhole mode Laser micro welding

Image Source: http://www.ionix.fi/content/wpcontent/uploads/2015/10/laser_welding.jpg

Melt Hydrodynamics in Laser polishing

Surface Over Melting

Thanks! Any questions?

Contact: Shashank Sharma Research Scholar Laser Material Processing Lab Dept. of Mechanical Engineering IIT Kanpur E-mail: kshashan@iitk.ac.in