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1 Introduction
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1 Introduction

Engineering Barrier System Natural Barrier System
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Low permeability
Proper swelling property
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Fuel assembly of final repository

Multi-barrier system of KBS-3 repository

(From Harrington, J., and Horseman, S. 2003)
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2 Conceptual Coupled HM-PF Model

Volume dilation
Gas injection end Increase of total stress Gas outflow end

Gas breakthrough\ /Preferential pathways

v

(From Wiseall et al. 2015)

Void exchange

Water transfer Fracture healing
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» Couplings Between Different Physical Field

COMSOL "ﬂ
MULTIPHYSICS® €@

Tensile strain energy

Stiffness degradation

(Modified from Guo, G. & Fall, M. 2019)
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3 Numerical Model and Implementation
» Phase Field Method
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4 7 Solid Mechanics (fcon)

AN
» Mechanical Model
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4 7 Solid Mechanics (fcon)
4 35 i i ia] 1
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= Equation View
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4 Strain
4 Principal strain directions
I Principal strain direction 1 (material and geometry frames)
I Principal strain direction 2 (material and geometry frames)
I Principal strain direction 3 (material and geometry frames)

4 Principal strains
fcon.ep1 - First principal strain
fcon.ep?2 - Second principal strain
fcon.ep3 - Third principal strain
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» Hydraulic Model
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4 B Gas migratioh (pg)

> W Fluid and Matrix Properties 1 kfrg =

> %= No Flow 1
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* (From Guo, G. & Fall, M. 2019)

< Transition function >

T(d)= %{tanh[@t (d—d,,)]-tanh (~d,6,)}




> Solver Settin gs Results at previous time step

x=0(x = pg, pw u, d)
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(Modified from https://www.comsol.com/blogs/improving-
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Preferentially propagate through
areas of low resistance

4 Simulation Results
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» Fracture trajectory (Phase field) in the
» Meshing and boundary conditions heterogeneous domain

(Modified from Guo, G. & Fall, M. 2019)
2019 BOSTON



Preferential gas flow in Rise of water pressure
the developed fracture during fracturing process
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4 Conclusions

»The developed coupled HM-PF model is successfully
Implemented into COMSOL by using Solid Mechanics
Module, Darcy’'s Law Module, Coefficient Form PDE,
Domain ODEs and DAEs and the Previous Solution Node.

»The developed model has satisfactorily described some
HM behaviors observed Iin experiments, such as the
development of preferential pathways, the localized gas
flow and the rise of water pressure.

W COMSOL 2019 BOSTON ﬁg@



References

>

>

Guo, G. & Fall, M. 2018. Modelling of dilatancy-controlled gas flow in saturated bentonite with double porosity and double
effective stress concepts. Engineering Geology, 243, 253-271

Guo, G. & Fall, M. 2019. Modelling of preferential gas flow in heterogeneous and saturated bentonite based on phase field
method. Computers and Geotechnics, 116, 103206

Harrington, J., and Horseman, S. 2003. Gas migration in KBS-3 buffer bentonite, Sensitivity of Test Parameters to Experimental
Boundary Conditions Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden).

Horseman, S.T., Harrington, J.F., and Sellin, P. 1999. Gas migration in clay barriers, Engineering Geology 54(1-2): 139-149.

Miehe, C., Welschinger, F., and Hofacker, M. 2010. Thermodynamically consistent phase-field models of fracture: Variational
principles and multi-field FE implementations, International journal for numerical methods in engineering 83(10): 1273-1311.

Miehe, C., Hofacker, M., and Welschinger, F. 2010. A phase field model for rate-independent crack propagation: Robust
algorithmic implementation based on operator splits, Comput Method Appl M 199(45-48): 2765-2778.

Mauthe, S. & Miehe, C. 2017. Hydraulic fracture in poro-hydro-elastic media. Mechanics Research Communications, 80, 69-83.

Marschall, P., Horseman, S., and Gimmi, T. 2005. Characterisation of gas transport properties of the Opalinus Clay, a potential
host rock formation for radioactive waste disposal, Oil & gas science and technology 60(1): 121-139.

» Wiseall, A., Cuss, R., Graham, C. & Harrington, J. 2015. The visualization of flow paths in experimental studies of clay-rich

materials. Mineralogical Magazine, 79, 1335-1342.

A

u



Thank you for your attention!
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