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1 Introduction 

Distribution of Nuclear Power Plants 
(From Wikipedia)
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1 Introduction 

Multi-barrier system of KBS-3 repository 
(From Harrington, J., and Horseman, S. 2003)

Engineering Barrier System Natural Barrier System

Low permeability
Proper swelling property 
High adsorptive capacity
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Experimental result (Horseman et al. (1999))

Preferential pathways
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(From Wiseall et al. 2015)
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2 Conceptual Coupled HM-PF Model 
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(Modified from Guo, G. & Fall, M. 2019)
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3 Numerical Model and Implementation
➢ Phase Field Method
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➢ Mechanical Model
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➢ Hydraulic Model
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(From Guo, G. & Fall, M. 2019)
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➢ Solver Settings Results at previous time step

𝒙𝒊=𝟎(𝒙 = 𝒑𝒈, 𝒑𝒘, 𝒖, 𝒅)

Segregated step 1

Solve 𝑝𝑔
𝑖+1, 𝑝𝑤

𝑖+1, 𝒖𝑖+1 based on 𝑑𝑖

Segregated step 2

Solve 𝐻𝑀
+(𝑖+1)

based on 𝒖𝑖+1

Segregated step 3

Solve 𝑑𝑖+1 based on 𝐻𝑀
+(𝑖+1)

Convergence?

Done

𝑖 = 𝑖 + 1

(Modified from https://www.comsol.com/blogs/improving-

convergence-multiphysics-problems/)

NO

YES

https://www.comsol.com/blogs/improving-convergence-multiphysics-problems/
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4 Simulation Results

➢ Meshing and boundary conditions
➢ Fracture trajectory (Phase field) in the 

heterogeneous domain

Preferentially propagate through 

areas of low resistance

(Modified from Guo, G. & Fall, M. 2019)
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➢ Distribution of gas pressure 

(scaled by its degree of saturation)
➢ Distribution of water pressure

Preferential gas flow in 

the developed fracture

Rise of water pressure 

during fracturing process
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4 Conclusions

➢The developed coupled HM-PF model is successfully
implemented into COMSOL by using Solid Mechanics
Module, Darcy’s Law Module, Coefficient Form PDE,
Domain ODEs and DAEs and the Previous Solution Node.

➢The developed model has satisfactorily described some
HM behaviors observed in experiments, such as the
development of preferential pathways, the localized gas
flow and the rise of water pressure.
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Thank you for your attention!


