

Mittuniversitetet

MID SWEDEN UNIVERSITY

DFPM The Dynamic Functional Particle Method

Mårten Gulliksson

Joint work with Sverker Edvardsson and Johan Persson

DFPM SOLVES EQUATIONS

We solve the abstract equation

 $\mathcal{F}(v) = 0$

by solving the oscillating damped equation

$$\mu u_{tt} + v u_t = \mathcal{F}(u)$$

with mass parameter μ and damping parameter u

such that

$$u_t, u_{tt} \rightarrow 0$$

DISCRETIZE IN SPACE

Discretize using finite differences, finite elements, or...

then
$$u_i(t) \approx u(x_i, t)$$
 $u_i(t) = (x_i, u_i(t))$
 x_i

giving the finite dimensional dynamical system

$$\mu_i \ddot{u}_i + \nu_i \dot{u}_i = F_i(x_1, \ldots, x_n, u_1, \ldots, u_n)$$

with mass and damping parameters

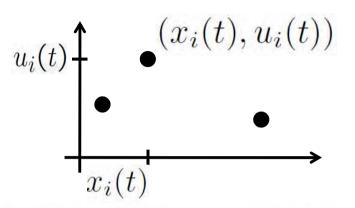
$$\mu_i = \mu(x_i, u_i(t), t), \ \nu_i = \nu(x_i, u_i(t), t)$$

Mittuniversitetet MID SWEDEN UNIVERSITY

MESH FREE METHOD

Particles may be chosen free to move

Giving the DFPM



$$\mu_i \ddot{u}_i + \nu_i \dot{u}_i = F_i(x_1(t), \dots, x_n(t), u_1(t), \dots, u_n(t))$$

For example (no grid assumed)

$$\frac{d^2 u}{dx^2}(x_i) \approx \left(\frac{\Delta x_{i+1}}{\langle x_i \rangle} u_{i-1} - 2u_i + \frac{\Delta x_i}{\langle x_i \rangle} u_{i+1}\right) / \Delta x_{i+1} \Delta x_i$$
$$\Delta x_i = x_i - x_{i-1}, \langle x_i \rangle = \frac{x_i + x_{i+1}}{2}$$

Mittuniversitetet

A FIRST EXAMPLE

As an introductory example consider the nonlinear initial value ODE

$$\frac{dv}{dx} = xv^2, v(0) = 0$$

That will give the nonlinear PDE (note the sign)

$$\mu u_{tt} + \nu u_t = -u_x + xu^2$$

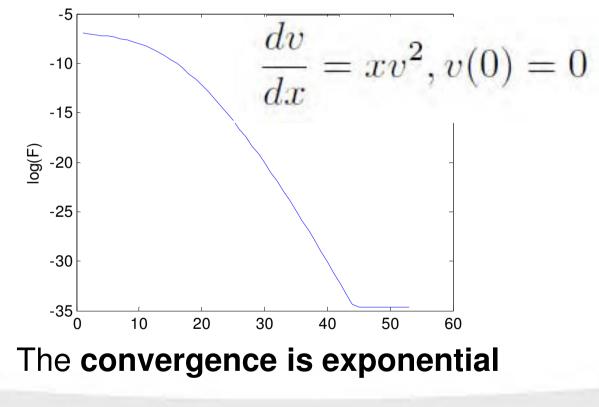
Using backward finite differences on a fixed grid gives DFPM

$$\mu_i \ddot{u}_i + \nu_i \dot{u}_i = -\frac{(u_i - u_{i-1})}{h} + x_i u_i^2$$

A FIRST EXAMPLE DYNAMICS...

Solution in $x \in [0, 1]$

with parameters $\mu = 1, \nu = 20$



FIRST ORDER SYSTEM

Solve the ODE for the particle system

$$\mu_i \ddot{u}_i + \nu_i \dot{u}_i = F_i(x_1, \ldots, x_n, u_1, \ldots, u_n)$$

by solving the first order system

$$\dot{u}_i = w_i$$

$$\dot{w}_i = -\frac{\nu_i}{\mu_i}w_i + \frac{1}{\mu_i}F_i(x_1, \dots, x_n, u_1, \dots, u_n)$$

USE SYMPLECTIC SOLVER FOR THE SYSTEM

Symplectic Euler (one of two) is

$$w_i^{k+1} = w_i^k - \Delta t_k \frac{\nu_i}{\mu_i} w_i + \Delta t_k \frac{1}{\mu_i} F_i(x_1, \dots, x_n, u_1^k, \dots, u_n^k)$$
$$u_i^{k+1} = u_i^k + \Delta t_k w_i^{k+1}$$

•Conserves energy if no damping is added

Very fast and stable

•Extrapolation can be performed easily

A NONLINEAR BOUNDARY VALUE ODE

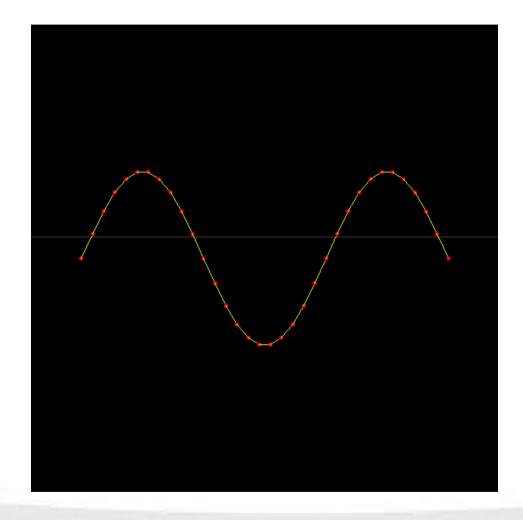
The equation

$$\frac{d^2v}{dx^2} + v\frac{dv}{dx} = \sin(x)(\cos(x) - \frac{2}{\pi} - 1) - \frac{2}{\pi}x\cos(x)$$
$$v(0) = v(1) = 0$$

The infinite dimensional dynamical system $\mu u_{tt} + \nu u_t = u_{xx} + u u_x + g(x)$ DFPM

$$\mu_{i}\ddot{u}_{i} + \nu_{i}\dot{u}_{i} = \frac{u_{i+1} - 2u_{i} + u_{i-1}}{h^{2}} + u_{i}\frac{u_{i+1} - u_{i-1}}{2h} + g(x_{i})$$
2010-11-23
2010-11-23
2010-11-23
2010-11-23
2010-11-23
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-11-24
2010-1

Animation of
$$\mu_i \ddot{u}_i + \nu_i \dot{u}_i = \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + u_i \frac{u_{i+1} - u_{i-1}}{2h} + g(x_i)$$



Mittuniversitetet MID SWEDEN UNIVERSITY 10

ENERGY AND POTENTIAL

If the 'force field' is **conservative** there exists a potential

$$V = -\sum_{i} \int_{u_i} F_i du_i + \sum_{i \neq j} \int_{u_j} F_i du_j + \dots$$

such that the **minimum of the potential** is the solution of the discretized equations

$$\frac{\partial V}{\partial u_i} = -F_i = 0 \qquad \text{or} \quad \nabla_{\mathbf{u}} V = -\mathbf{F}(\mathbf{u}) = 0$$

This **global property** can be used in DFPM in a similar way as for simulated annealing...

ALGORITHMIC IDEAS

Consider the energy functional or Lyapunov function

$$E = T + V = \frac{1}{2} \sum \mu_i \dot{u}_i^2 + V(u_1, u_2, ...)$$

then
$$\frac{dE}{dt} = -\sum_i \nu_i \dot{u}_i^2 \le 0$$

and the damping will always lower the energy functional until it reaches a steady state where the potential is at a minimum.

ALGORITHMIC IDEAS

Start in the direction of lower potential

$$\mathbf{w}^0 = \gamma \mathbf{F}$$

Do undamped oscillations to catch a low potential

If **close to a low potential then damp** the system heavily to reach a (local) minimum

Otherwise **systematically lower the energy functional** to reach steady state

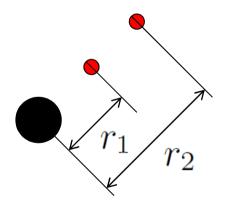
Mittuniversitetet

SCHRÖDINGER EQUATION THE EIGENVALUE PROBLEM

The equation for Helium ground state reads

$$-\frac{\hbar^2}{2m} \triangle \psi + V(r_1, r_2)\psi = E\psi$$

By discretizing in $\,r_1$ and $\,r_2\,\,$ we get $A{f v}=\lambda{f v}$ where $\|{f v}\|=1$



SCHRÖDINGER EQUATION THE EIGENVALUE PROBLEM

The eigenvalue is not known but can be approximated with the Rayleigh quotient $\mathbf{u}^T A \mathbf{u}$

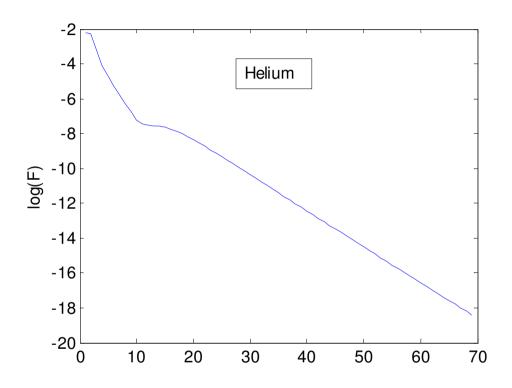
and DFPM is

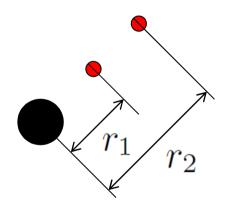
$$A\mathbf{u} - (\mathbf{u}^T A \mathbf{u}) \mathbf{u} = M \ddot{\mathbf{u}} + N \dot{\mathbf{u}}$$
where $\|\mathbf{u}\| = 1$ and
 $M = \operatorname{diag}(\mu_1, \dots, \mu_m), N = \operatorname{diag}(\nu_1, \dots, \nu_m)$
Deflation is needed for the other eigenvalues

MITTUNIVERSITETET

15

SCHRÖDINGER EQUATION THE EIGENVALUE PROBLEM





The convergence is exponential

NONLINEAR SCHRÖDINGER EQUATION

A nonlinear ODE on the form

$$-\frac{1}{2}\frac{d^{2}\psi}{dx^{2}} + \hbar^{2}|x|^{2}\psi + \omega\psi - \lambda\psi|\psi|^{2} = 0$$

where

$$\omega = \int_{-\infty}^{\infty} \psi \left(-\frac{1}{2}\frac{d^2\psi}{dx^2} + \hbar^2 |x|^2 \psi + \omega\psi - \lambda\psi |\psi|^2\right) dx$$

Mittuniversitetet MID SWEDEN UNIVERSITY 17

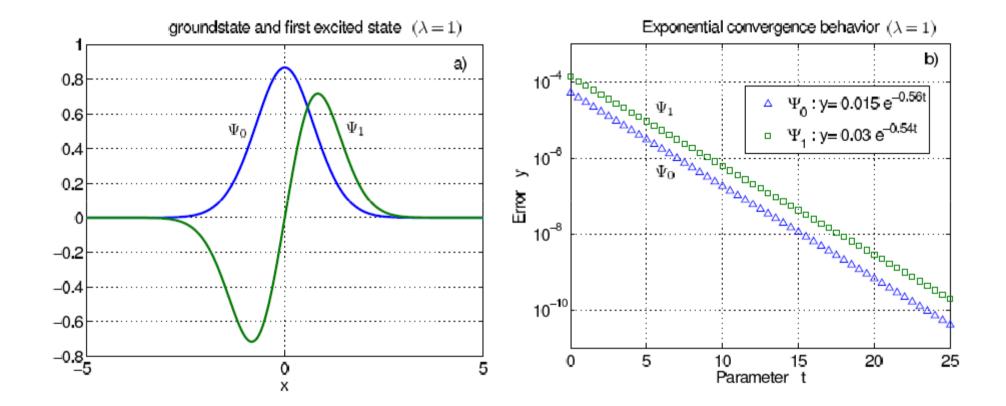
NONLINEAR SCHRÖDINGER EQUATION

After discretization with finite differences we get the DFPM

$$M\ddot{\mathbf{u}} + N\dot{\mathbf{u}} = \mathbf{f}(\mathbf{u})$$

where
$$\ u_{i}
ightarrow \psi(x_{i})$$
 and $\ {f f}({f u})$ is a nonlinear function

NONLINEAR SCHRÖDINGER EQUATION



CONVERGENCE ANALYSIS

If there exist a **potential** every extreme point is a solution of the equations

$F_i = 0$

Thus **DFPM always converges** close to a local minium (or maximum with a change of sign)

However, the existence is sufficient but **not a necessary condition** for convergence (e.g., IVP)

We have not yet failed in solving an equation with the DFPM (a reformulation of the problem may be necessary)

CONLUCIUSIONS

•Simple way of solving nonlinear ode, pde,...

Exponential convergence

•Global convergence properties

A LOT OF FUTURE WORK

- •Extend to several dimensions generally
- Develop time dependent 'mesh'
- •Solve the many particle Schrödinger equation (Litium)
- •A general method utilizing potential and global properties
- •Show mathematically strict the convergence (rate)

