

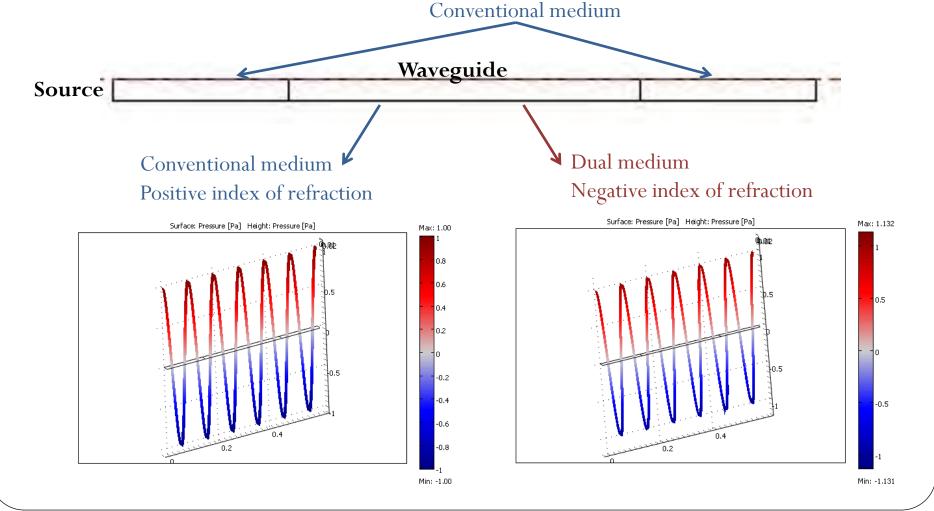
Design of Acoustic Metamaterials based on the Concept of Dual Transmission Line

Anne-Sophie Moreau¹, Hervé Lissek¹ and Frédéric Bongard²

¹Ecole Polytechnique Fédérale de Lausanne, Switzerland

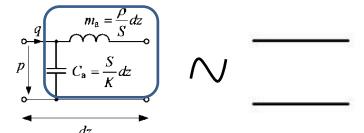
²JAST SA, Switzerland

Layout of the presentation

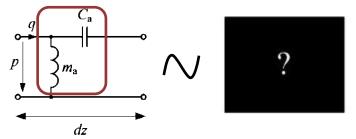

- Introduction & Objectives
- Transmission line concept
 - Conventional & Dual acoustic TL
- Lumped element models
 - Membrane, Stub & CRLHTL
- Finite element models
 - Membrane, Stub & CRLHTL
- Methodologies for the assessment
 - Lumped & Finite element models
- Results
 - Bloch, Scattering parameters & Unbalanced case
- Conclusion

Introduction

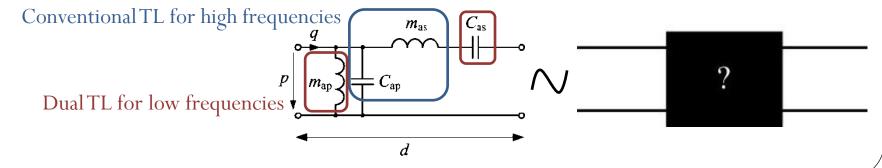
- Acoustic metamaterials: artificial structures using inclusions of elements, whose dimensions are smaller than the wavelengths of interest, so as to enact effective macroscopic behavior not readily available in nature
- Growing interest for acoustic metamaterials
- Capability to achieve new properties like negative refraction
- Lots of development in Electromagnetics
- Proposed structure based on transmission line concept: acoustic waveguide loaded with membranes and open radial stubs


Objectives

• Negative refraction: an illustration

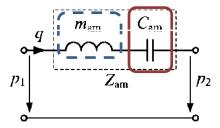


Transmission line concept

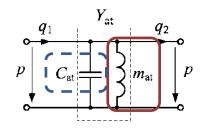

- Conventional acoustic TL
 - Describe the propagation of waves
 - Positive index of refraction

- Dual acoustic TL
 - Dual topology
 - Negative index of refraction

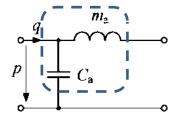
- Unit cell of the composite right/left-handed (CRLH) TL
 - Dual acoustic TL has to load a conventional TL
 - Equivalent circuits assumed lossless



Lumped element models

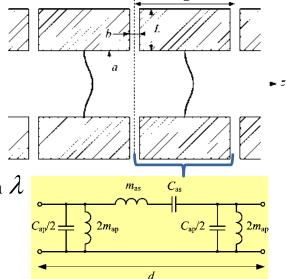

- Membrane
 - Implements a series compliance
 - Mechanical element

- Stub
 - Implements a parallel mass
 - Acoustic element


- Host waveguide
 - Conventional TL

$$\begin{cases} m_{as} = m_{am} + m_{a} \\ C_{ap} = C_{at} + C_{a} \end{cases} and \begin{cases} m_{ap} = m_{at} \\ C_{as} = C_{am} \end{cases}$$

Lumped element models

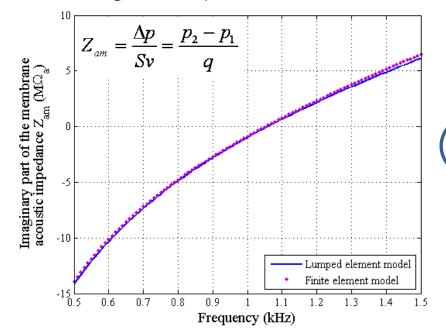

- CRLHTL
 - Balanced condition between RH & LH bands

$$m_{as}C_{as}=m_{ap}C_{ap}$$

- Balanced condition for $f_0 = 1 \text{kHz}$
- ullet Lattice constant d small compared to the wavelength λ

$$d/\lambda = 0.1$$
 at $f_0 \longrightarrow d = 34$ mm

Dimensions and values of masses & compliances


	Dimension	Value
а	Membrane radius	9.06 mm
h	Membrane thickness	125 µm
Ь	Stub thickness	1 mm
L	Stub length	43.5 mm
d	Lattice constant	34 mm

		Value (kg/m ⁴)		Value (x10 ⁻¹² m ³ /Pa)
TL	m_a	156.1	C_a	63.6
Membrane	m_{am}	1296	C_{am}	17.43
Stub	m_{at}	351.1	C_{at}	8.34
Series	m_{as}	1452.1	C_{as}	17.43
Parallel	m_{ap}	351.1	C_{ap}	71.94

Finite element models

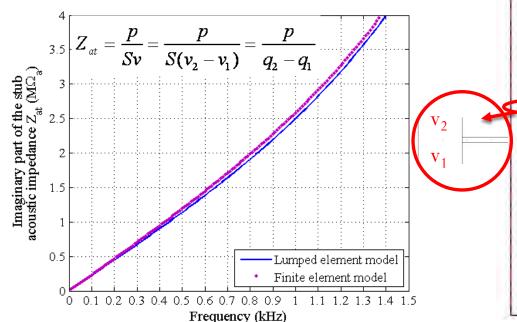
 p_1 Z_{am} p_2

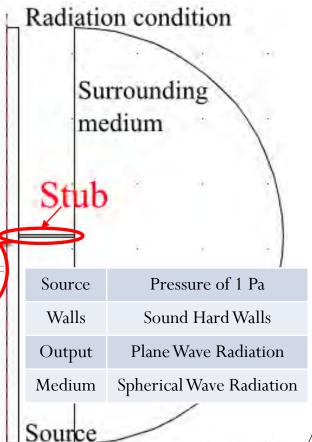
- Membrane
 - 2D axi-symmetric acoustic structure interaction model
 - Thin circular membrane clamped at its perimeter modeled as a thin plate: no tension is applied
 - Δp : average pressure applied on the membrane
 - *v*: average velocity of the membrane

. .

Radiation condition

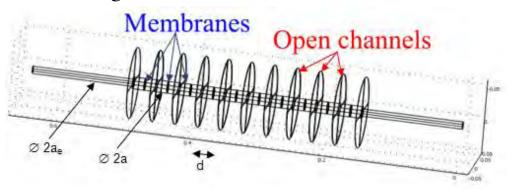
Membrane

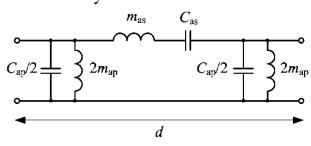

Source	Pressure of 1 Pa
Walls	Sound Hard Walls
Output	Plane Wave Radiation

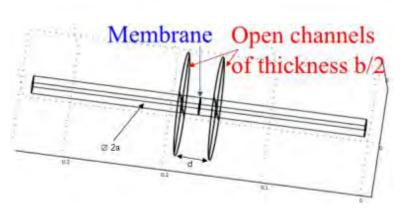

Source

Finite element models

 q_1 q_2 q_2 q_3 q_4 q_4 q_5 q_6 q_8 q_8


- Stub
 - 2D axi-symmetric pressure acoustic model
 - Radial open tube radiating in a surrounding medium
 - *p*: average pressure at the entrance of the stub
 - *v*: average velocity at the entrance of the stub



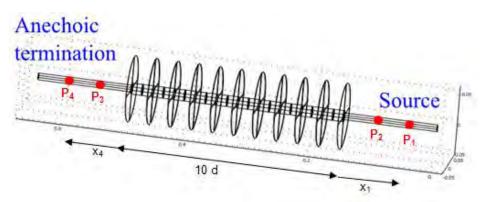

Finite element models

- CRLH-TL
 - 2D axi-symmetric acoustic structure interaction model
 - Periodic structure with the same boundary conditions as before
 - Connection to an adapted host waveguide to avoid reflection at the interfaces
 - CRLH-TL with 10 cells

• 1 symmetric cell

Methodologies for the assessment

- Lumped element model
 - Computation of the Bloch parameters
 - Description of the propagation of waves in periodic structures
 - Pulsation of the two branches $\omega_R = \frac{1}{\sqrt{m_{as}C_{ap}}}$ and $\omega_L = \frac{1}{\sqrt{m_{ap}C_{as}}}$
 - Bloch impedance Z_B and dispersion diagram $\beta_B d$


$$\cos(\gamma_B d) = 1 - \frac{\left(\frac{\omega}{\omega_R} - \frac{\omega_L}{\omega}\right)^2}{2}$$

$$Z_{B,\pi} = \frac{\sqrt{\frac{m_{as}}{C_{ap}}}}{\sqrt{1 - \frac{\left(\frac{\omega}{\omega_R} - \frac{\omega_L}{\omega}\right)^2}{4}}}$$

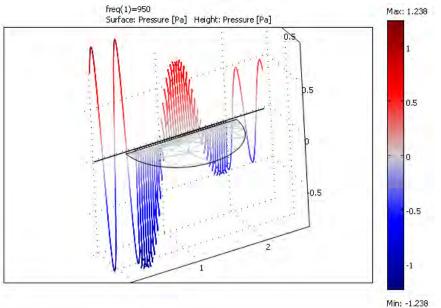
Methodologies for the assessment

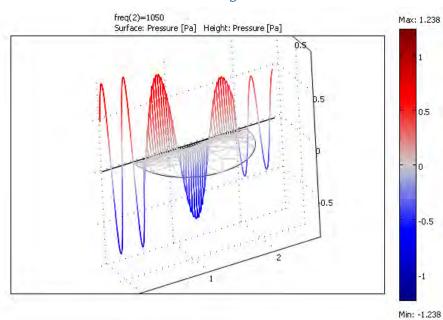
- Finite element model
 - Four probes sensing pressure

Distance	Value	
$\mathbf{x}_1 = -\mathbf{x}_4$	0.1 m	
$\mathbf{x}_2 = -\mathbf{x}_3$	0.05 m	
S	0.05 m	

- Propagation of plane waves under $f < 0.586 \frac{c}{2a} = 11 \text{kHz}$
- 2 & 4 microphones methods
- Scattering parameters: 1 & 10 cells
- Bloch parameters: 1 cell

$$\begin{cases} R = \frac{H_{12} - e^{-jks}}{e^{jks} - H_{12}} e^{2jkx_1} \\ T = \frac{C}{A} = \frac{P_3 e^{jkx_4} - P_4 e^{jkx_3}}{P_1 e^{jkx_2} - P_2 e^{jkx_1}} \end{cases}$$

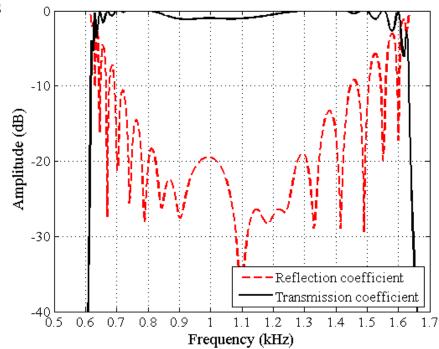

$$\begin{cases} \cos(\gamma_B d) = \frac{1 - R^2 + T^2}{2T} \\ Z_B = \pm Z_0 \sqrt{\frac{(1 + R)^2 - T^2}{(1 - R)^2 - T^2}} \end{cases}$$


Results

Bloch parameters

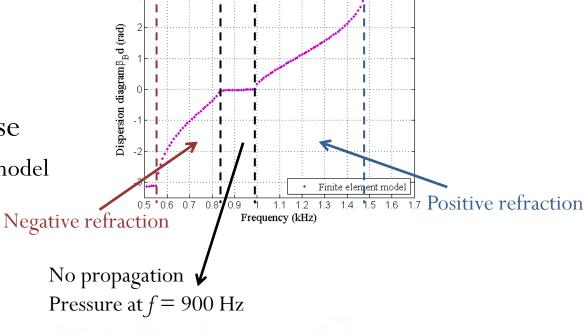
Dispersion diagram $\beta_B d$ (rad) Finite element model Lumped element mødel 1.2 1.3 1.4 1.5 1.6 1.7 Frequency (kHz) Negative refraction Positive refraction Pressure at f = 1050 Hzfreq(2)=1050

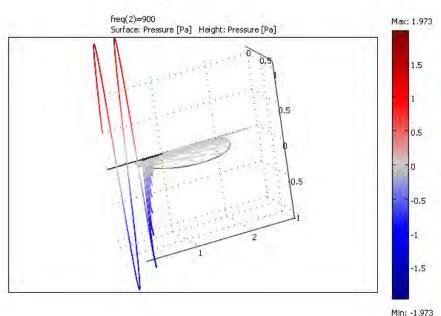
Pressure at f = 950 Hz



Results

- Scattering parameters
 - 2 & 4 microphones methods can be realized experimentally
 - 2 microphones reflection coefficient
 - 4 microphones \longrightarrow transmission coefficient


• LEM & FEM match well (previous results) so FEM results can be used as a


reference for experimental results

Results

- Unbalanced case
 - Finite element model
 - L = 80 mm

Conclusion

- Circuit theory concepts efficiently used to design a TL-based metamaterial
- Inclusion of mechanical elements to realize series compliance
- Proposed structure: negative refractive band of almost one octave with a balanced condition & unbalanced case
- LEM & FEM models confirm performances
- Future experimental measurement of scattering parameters to validate the results
- Further work in FEM to predict performances of a 2D version of this structure

Thank you for your attention

Corresponding author: herve.lissek@epfl.ch

This work was supported by the Swiss National Scientific Foundation under research grant 200021-130255