Problem Statement	FEM Theory	Test Problem	Conclusions

Conducting Finite Element Convergence Studies Using COMSOL 4.0

Matthias K. Gobbert and David W. Trott

Department of Mathematics and Statistics UMBC High Performance Computing Facility (HPCF) Center for Interdisciplinary Research and Consulting (CIRC) University of Maryland, Baltimore County {gobbert,dtrott1}@umbc.edu Acknowledgments: NSF, HPCF, CIRC, UMBC

See: Technical Report HPCF-2010-8, www.umbc.edu/hpcf > Publications

Problem Statement	FEM Theory	Test Problem	Conclusions
●0	o	0000000	
Problem Statement			

- Problem: Assess the quality of a FEM solution quantitatively for all Lagrange elements with polynomial degrees $1 \le p \le 5$ available in COMSOL.
- Approach: Use guidance from the a priori error estimate

$$\left\| u - u_h \right\|_{L^2(\Omega)} \le C h^q, \quad \text{ as } h \to 0$$

with a constant C independent of h and the convergence order q > 0. Here, h is the maximum side length of the elements in the triangulation.

- Goal: Confirm that solutions on a sequence of meshes, that are progressively uniformly refined, behaves as predicted by the error estimate.
- Concrete goal: Show how to do this in COMSOL's GUI!

Problem Statement FEM Theory •• o Computational Convergence Study

Conclusions

• Consider the FEM solution u_h on a sequence of meshes with uniform refinement levels $r = 0, 1, 2, \ldots$, and let $E_r := \|u - u_h\|_{L^2(\Omega)}$ denote the norm of the error.

• Then assuming that $E_r = C h^q$, the error for the next coarser mesh with mesh spacing 2h is $E_{r-1} = C (2h)^q = 2^q C h^q$. Their ratio is then $R_r = E_{r-1}/E_r = 2^q$ and $Q_r = \log_2(R_r)$ provides us with a computable estimate for q as $h \to 0$. Example:

r	E_r	R_r	Q_r
0	1.077e-01	N/A	N/A
1	2.652e-02	4.06	2.02
2	6.709e-03	3.95	1.98
3	1.684e-03	3.98	1.99
4	4.214e-04	3.99	2.00

• This indicates that the convergence order is q = 2.

Problem Statement	FEM Theory	Test Problem	Conclusions
00	●	0000000	
FEM Theory for Lagra	nge Elements		

• For linear Lagrange elements (polynomial degree p = 1), optimal convergence order is q = p + 1 = 2 in

$$||u - u_h||_{L^2(\Omega)} \le C h^q = C h^2$$

• For Lagrange FEM with polynomial degree p = 1, ..., 5, as available in COMSOL, we expect q = p + 1 in

$$||u - u_h||_{L^2(\Omega)} \le C h^q = C h^{p+1},$$

provided that

- the solution u is smooth enough: $u \in H^k(\Omega)$ with $k \ge p+1$,
- the domain Ω is open, bounded, convex, and simply connected,
- and the domain boundary $\partial \Omega$ piecewise polygonal,

i.e., the domain Ω can be triangulated without error.

• For Lagrange FEM with polynomial degree p = 1, ..., 5, if the solution is $u \in H^k(\Omega)$, then

$$\|u - u_h\|_{L^2(\Omega)} \le C h^q, \quad q = \min\{k, p+1\}.$$

Classical elliptic test problem on a polygonal domain with Dirichlet boundary conditions on $\Omega \subset \mathbb{R}^2$

 $-\bigtriangleup u = f \quad \text{in } \Omega,$ $u = r \quad \text{on } \partial\Omega.$

- Use unit square as domain: $\Omega = (0,1) \times (0,1) \subset \mathbb{R}^2$.
- Right-hand side function:

$$f(x,y) = (-2\pi^2) \left(\cos(2\pi x) \sin^2(\pi y) + \sin^2(\pi x) \cos(2\pi y) \right)$$

• Homogeneous Dirichlet boundary conditions:

$$r(x,y) = 0$$

Sac

Problem Statement	FEM Theory	Test Problem	Conclusions
00	0	o●oooooo	
Elliptic Test Problem:	PDE Solution		

- $u(x,y) = \sin^2(\pi x) \sin^2(\pi y)$ on $\Omega = (0,1) \times (0,1) \subset \mathbb{R}^2$
- u infinitely often differentiable $\Longrightarrow u \in H^k(\Omega)$ with $k = \infty$
- Therefore convergence order $q = \min\{k, p+1\} = p+1$.

- This mesh has $N_e = 26$ elements and $N_v = 20$ vertices.
- DOF is equal to N_v for linear Lagrange elements.

Problem Statement 00	FEM Theory 0	Test Problem ○00●000	Conclusions
Elliptic Test Problem:	Convergence Study v	with Linear Lagrange	Э

10	Lagrange cloinents with p 1							
r	N_e	N_v	DOF	E_r^2	E_r	R_r	Q_r	
0	26	20	20	1.160e-02	1.077e-01	N/A	N/A	
1	104	65	65	7.031e-04	2.652e-02	4.06	2.02	
2	416	233	233	4.501e-05	6.709e-03	3.95	1.98	
3	1664	881	881	2.835e-06	1.684e-03	3.98	1.99	
4	6656	3425	3425	1.776e-07	4.214e-04	3.99	2.00	

Lagrange elements with p = 1

- Same results as presented before. Additional information includes E_r^2 which is the raw data that appears in the GUI along with statistical information about the mesh.
- Note: Number of vertices N_v was obtained using LiveLink with MATLAB. See tech. rep. HPCF-2010-8.

<ロト (四) (三) (三)

Problem Statement	FEM Theory	Test Problem	Conclusions
00	0	○0000€0	
Elliptic Test Problem:	Lagrange Elements of	of Orders $p = 2$ and	p = 3

Lagrange elements with $p = 2$							
r	N_e	N_v	DOF	E_r^2	E_r	R_r	Q_r
0	26	20	65	$4.351e{-}05$	6.596e-03	N/A	N/A
1	104	65	233	1.259e-06	1.122e-03	5.88	2.56
2	416	233	881	2.076e-08	1.441e-04	7.79	2.96
3	1664	881	3425	$3.294e{-10}$	1.815e-05	7.94	2.99
4	6656	3425	13505	$5.180e{-12}$	2.276e-06	7.97	3.00

Lagrange elements with p = 3

r	N_e	N_v	DOF	E_r^2	E_r	R_r	Q_r
0	26	20	136	6.991e-06	2.644e-03	N/A	N/A
1	104	65	505	$2.031e{-}08$	1.425e-04	18.56	4.21
2	416	233	1945	$7.460e{-11}$	8.637e-06	16.50	4.04
3	1664	881	7633	$2.834e{-13}$	5.327e-07	16.22	4.02
4	6656	3425	30241	$1.095e{-}15$	3.309e-08	16.10	4.01

Matthias K. Gobbert and David W. Trott

э

Problem Statement	FEM Theory	Test Problem	Conclusions
00	0	○00000●	
Elliptic Test Problem	· Lagrange Eleme	nts of Orders $n - A$	and $n-5$

La	Lagrange elements with $p = 4$							
r	N_e	N_v	DOF	E_r^2	E_r	R_r	Q_r	
0	26	20	233	6.634e-09	8.145e-05	N/A	N/A	
1	104	65	881	$1.467e{}11$	3.830e-06	21.27	4.41	
2	416	233	3425	$1.578e{-}14$	1.256e-07	30.49	4.93	
3	1664	881	13505	$1.605e{-}17$	4.006e-09	31.36	4.97	
4	6656	3425	53633	1.595e-20	$1.263e{}10$	31.71	4.99	

Lagrange elements with p = 5

r	N_e	N_v	DOF	E_r^2	E_r	R_r	Q_r
0	26	20	356	$7.656e{-10}$	2.767e-05	N/A	N/A
1	104	65	1361	$1.421e{-}13$	3.770e-07	73.39	6.20
2	416	233	5321	$3.421e{-}17$	5.849e-09	64.45	6.01
3	1664	881	21041	$8.306e{-}21$	$9.114e{-11}$	64.17	6.00
4	6656	3425	83681	$1.819e{-}24$	1.349e-12	67.58	6.08

Matthias K. Gobbert and David W. Trott

・ロト ・四ト ・ヨト ・ヨト

э

Problem Statement	FEM Theory	Test Problem	Conclusions				
00	0	0000000					
Conclusions and Live Demonstration							

Conclusions:

- COMSOL: behaves as predicted by theory for Lagrange elements on triangular meshes in 2-D.
- Education: COMSOL can be used to demonstrate FEM theory
- Applications: tests of this type can guide choice of finite elements
- Limitation of GUI: convergence study entirely in the GUI of COMSOL; however, the refinement level r and polynomial degree p cannot be programmed as parameters in a parameter sweep ⇒ consider using COMSOL's LiveLink for MATLAB!
- Support: tech. rep. HPCF-2010-8 at www.umbc.edu/hpcf > Publications, includes the mph-file and m-files for LiveLink for MATLAB

Demonstration:

- Loads mph-file as starting point: (i) sets up domain, PDE, BC; (ii) chooses linear Lagrange (p = 1) with 'extremely coarse' mesh and no refinement (r = 0); (iii) after solution gives 3-D view of solution and square of FEM error by post-processing integration
- Shows how to obtain refined meshes for r = 1, 2, ... and their solutions including square of error

Matthias K. Gobbert and David W. Trott

Mathematics and Statistics, UMBC

つへで 12 / 12