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Presentation Outline

• New poroelastic fibre microstructure material model with analytical viscous 
drag force and heat transfer expressions for cylindrical fibres.

• Based only on geometrical properties of the material, and constitutive 
properties of the solid fibres and surrounding fluid. 

• Includes diameter and fibre orientation distributions, which are tied closely 
to material production methods.

• Utilize COMSOL thermoviscous acoustic fluid FE models as a Virtual 
Laboratory, to verify the assumption of no viscous and thermal boundary 
layer interaction between neighbouring fibres.



• Transversely isotropic (stacked isotropic layers with some fibres 
orientated vertically)

Transversely Isotropic Fibre Assumption

• 10 kg/m3 bulk density glassfibre aircraft thermal insulation
• 1.28 micron mean fibre diameter

Fibre Diameter, micrometres
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Solid Momentum Equations

Fluid Momentum Equations

Momentum Equations in Terms of 
Viscous Drag Forces

* Viscous Drag Force Impedance Matrix
relative motion between 
solid and fluid

transversely isotropic, isotropic 
or fully anisotropic

longitudinal cylinder 
oscillations

transverse cylinder 
oscillations

* defined in terms of diameter and fibre orientation distributions

boundary layer interaction within a regular array of 
fibres as a means of better understanding dominant 
physical mechanisms, and confirming the 
underlying assumptions in the model, i.e. that there 
is not significant interaction between the viscous and 
thermal boundary layers of neighbouring fibres. 
 

Material Definition 
 

  
Figure 1. SEM micrograph of Johns Manville Microlite 

AA glass fibre thermal insulation material. 20 
micrometre scaling. 
 
The porous material used for this development is a 
lightweight (10 kg/m3 bulk density), and flexible 
aircraft fuselage acoustical and thermal insulation 
from the Johns Manville Company, as shown in 
Figure 1. The solid fibre skeleton consists of a 
distribution of cylindrical glass fibres, having 
diameters ranging from 0.125 to 5.0 micrometres, 
with a mean fibre diameter of 1.28 micrometres, and 
standard deviation of 0.92 micrometres. 
 

  
Figure 2. Transversely isotropic fibre representation. 

 
The orientation of the fibres is assumed to be 
primarily transversely isotropic, with some fibres 
being orientated through the thickness of the 
material to provide structural integrity and 
compressional stiffness, as shown in Figure 2. A full 
description of the material, its microstructural, 
constitutive and elastic properties is provided in [1, 
5]. 
 
Microstructure Derived Poroelastic 
Equation Summary 
 
The governing coupled fluid-solid equations for this 
fibrous material are formulated using the 
assumption that the volume fraction is uniform 
throughout the solid, interconnected fibre skeleton; 

every plane cuts through a fraction f  of solid fibre 
per unit total area. It is also assumed that we do not 
have any pressure gradient forces at the fluid-fibre 

interfaces inside the control volume boundary. If the 
contents of the control volume are held constant, 
pressurising the fluid applies a compressive stress or 
dilatation of the solid fibre. Alternatively, if the 
control volume is held constant, applying a stress to 
the solid applies a pressure stress or dilatation to the 
fluid. This coupling between the solid fibres and 
surrounding fluid results in a set of stress-strain 
relations for the porous composite, which we 
assume to be transversely isotropic for the fibrous 
insulation material considered here. 
 
Momentum Equations 
 
Summarising the detailed formulation presented in 
[1], the equation of motion of the solid fibre skeleton 
(solid momentum equation) is written as 
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where are the components of the dynamic  

viscous drag force vector , which the skeleton  

exerts on the fluid per unit volume. The viscous drag 
force is a linear function of the solid strains and fluid 
displacements, given in the frequency domain in 
matrix form in terms of the relative motion between 
the two phases 
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where  is the spatially-averaged dynamic 

viscous drag force impedance matrix per unit 
volume [5], for a transversely isotropic fibrous 
material 
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The coefficients J, K, are defined in terms of the 
analytical axial and transverse viscous drag force 
impedances for an individual fibre 
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and where the shear wavenumber of the infinite 

viscous fluid is . Note that the  

dynamic viscous drag force impedance matrix may 
be defined for isotropic, and fully anisotropic 
materials as well as for a distribution of fibre 
diameters and orientation angles. 
 
In a similar way, a momentum balance on the fluid 
phase of the porous material allows the equation of 
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Non-Equilibrium Fluid Dilatation 
 
Under equilibrium conditions, stress and strain for 
any porous material are related by coupled 
constitutive stress-strain relations of the form  
 .  (7) 
 
When waves propagate in the porous fibrous 
material, assumed one-way heat transfer between 
the solid fibres and surrounding viscous fluid allows 
a thermal expansion of the fluid phase. This leads to 
an extension of the fluid dilatation terms away from 
equilibrium. Making use of the linearised entropy 
relations for a two-phase porous material, we can 
derive a new fluid dilatation expression [1], which is 
valid for non-equilibrium conditions  
  . (8) 
 
Here, the fluid pressure term is now scaled by the 
frequency-dependent coefficient c  
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and  is the effective thermal impedance function, 
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which is derived from the oscillatory thermal fields 
of the respective fluid and solid phases [6].  
   
Transfer Matrix Acoustic Simulations  
 
The complete description of coupled acoustic and 
structural wave propagation through the three-
dimensional porous material is then provided by 
Eqs. (1, 6 and 8), where the viscous dissipation and 
thermal heat transfer behaviour has been defined in 
terms of microstructure-based analytical 
expressions. It is then straightforward to define a set 
of wave equations, and formulate a transfer matrix  
(TM) representation of the model [1, 4].  
 
For validation purposes, we then consider plane 
acoustic wave propagation through a rigidly-backed 
finite thickness of the fibrous material, i.e. the 
standard acoustic impedance tube experiment. We 

have then used the material mean fibre diameter of 
1.28 micrometres, and a fibre inclination angle of 50 
degrees (from the xy plane) in the TM formulation 
to simulate the acoustic absorption behavior of a 50 
mm thickness of material sample and compared this 
to measurements, as shown in Fig. (3). 
 

 
Figure 3. Measured and simulated normal-incidence 
absorption coefficient. 
 
A very good agreement exists in the comparison 
between the numerical simulation and measured 
absorption coefficient across the entire frequency 
range. Material inertial and dissipative effects have 
been correctly represented in the simulation. 
 
The list of material properties used for the TM 
simulation are provided in [1], and they consist of 
only the geometrical microstructure parameters, the 
constitutive properties for air and glass at 20 deg. C., 
and the measured macroscopic elastic properties of 
the material. We will also present results for this 
material using an expanded set of fibre diameter 
distributions and orientation angles in future work.  
 
In addition, the analytical expressions for dynamic 
viscous drag impedance through the thickness of the 
material sample, as defined by Eq. (3), may also be 
scaled according to fibre diameter distributions and 
orientations to provide an estimate of the airflow 
resistance of the material (note that viscous drag 
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same units). This is shown in Fig. (4), in the form of 
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Figure 4. Dynamic viscous drag force impedance 
function. 
 
The through-thickness measured value of airflow 
resistivity for this material was 23400 Ns/m4, while 
the low frequency estimate provided by Eq. (3) was 
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boundary layer interaction within a regular array of 
fibres as a means of better understanding dominant 
physical mechanisms, and confirming the 
underlying assumptions in the model, i.e. that there 
is not significant interaction between the viscous and 
thermal boundary layers of neighbouring fibres. 
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lightweight (10 kg/m3 bulk density), and flexible 
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from the Johns Manville Company, as shown in 
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distribution of cylindrical glass fibres, having 
diameters ranging from 0.125 to 5.0 micrometres, 
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standard deviation of 0.92 micrometres. 
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primarily transversely isotropic, with some fibres 
being orientated through the thickness of the 
material to provide structural integrity and 
compressional stiffness, as shown in Figure 2. A full 
description of the material, its microstructural, 
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dilatation of the solid fibre. Alternatively, if the 
control volume is held constant, applying a stress to 
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Fluid Continuity with Heat Transfer 
from Fibre to Fluid

Stress-Strain for Transverse Isotropy

Fluid Dilatation modified for Non-Equilibrium
(heat flow from fibres to fluid results in 
thermal expansion of the fluid)

Scaling Coefficient

Thermal Impedance at fibre/fluid 
interface
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defined as 
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based on oscillatory fluid 
and fibre thermal fields



Impedance Tube Sound Absorption

• Measurement: 50 mm sample thickness, rigid backing impedance tube.
• TM Simulation: 1.28 micron mean fibre diameter, assumed 50 deg. fibre

inclination angle.
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Sound Transmission Through Aircraft 
Fuselage with Temperature Gradient

• Diffuse STL through an aircraft fuselage during inflight conditions.
• - 50 to 20 deg. C temperature gradient.
• Traditional room temperature analysis over-estimates acoustic

performance.
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Thermoviscous Acoustic Fluid Modelling
COMSOL as a Virtual Laboratory

• 1.28 micron solid cylinder, 0.01 micron transverse oscillations (@ 1 Hz)
• 15 mm thermoviscous fluid, 5 mm acoustic field with external radiation 

boundary (to ensure complete decay of radiating waves)
• internal stress field of fibre is modelled
• 12 million DOF, nanoscale element sizes along fibre boundary



Viscous and Thermal Boundary Layers 
on a Single Fibre

• Viscous and thermal boundary layers concentrated near fibre surface, 
at the micro and nano scale.

• Analytical transverse dynamic drag impedance: 87665 Ns/m4 at 1 Hz. 
• FE solution: 87642 Ns/m4. 0.02% difference.

viscous thermal



viscous thermal

Viscous and Thermal Boundary Layer 
Strength

• Viscous dissipation effects dominate in the material.
• Boundary layer strengths are concentrated near fibre surface.
• Viscous boundary layer has dissipated 98% at the neighbouring fibre. 

Viscous boundary layer penetration depth is 2.2 mm at 1 Hz. Thermal is 
2.6 mm.
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Multifibre Array Modelling

• 225 regularly spaced fibre array representative of diameter distribution.
• Allows viscous and thermal boundary layer interaction between fibres to 

be considered.
• 35 million DOF in model.



viscous thermal

225 Fibre Array: Viscous and Thermal 
Boundary Layers Interaction

• Viscous drag force estimate within approx. 1.1% of analytical solution.
• Amplitude increases observed for outer thermal boundary fibres.
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viscous thermal

Viscous and Thermal Boundary Layers 
Along X-Axis

• Uniqueness of viscous boundary layer amplitudes – assume no
significant interaction between fibre viscous boundary layers.

• Incremental scaling of thermal boundary layers amplitudes. 
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Conclusions

• Poroelastic fibrous microstructure material model with analytical viscous 
drag force and thermal heat transfer expressions.

• Fibre diameter/orientation distributions, which are closely tied to 
material manufacturing processes.

• Acoustics vs temperature investigations.

• Traditional poroelastic transport properties are not required.

• COMSOL thermoviscous acoustic fluid simulations used as a Virtual 
Laboratory to confirm negligible interaction between the dominant 
viscous boundary layers. 


