-5

-10

-15

-20

-25

-30

-35

<u>4</u>N

Modeling the Internal Pressure Distribution of a Fuel Cell

Mikko Mikkola & Pauli Koski

New Energy Technologies group Department of Applied Physics Helsinki University of Technology Espoo, Finland

email: firstname.lastname@tkk.fi

What are fuel cells?

- Electrochemical devices that convert the chemical energy of reactants directly into electricity and heat
- Oxidation and reduction physically separated and charge carriers forced to take separate paths

Polymer electrolyte membrane and thin film electrodes, ~40 µm

Polymer electrolyte membrane and thin film electrodes, ~40 µm

Gas diffusion layers, carbon paper or cloth, ~300 µm

Polymer electrolyte membrane and thin film electrodes, ~40 µm

Gas diffusion layers, carbon paper or cloth, ~300 µm

Gaskets

Polymer electrolyte membrane and thin film electrodes, ~40 µm

Gas diffusion layers, carbon paper or cloth, ~300 µm

Gaskets

Flow field plates

Polymer electrolyte membrane and thin film electrodes, ~40 µm

Gas diffusion layers, carbon paper or cloth, ~300 µm

Gaskets

Flow field plates

Current collectors

Polymer electrolyte membrane and thin film electrodes, ~40 µm

Gas diffusion layers, carbon paper or cloth, ~300 µm

Gaskets

Flow field plates

Current collectors

End plates

Significance of compression

- Low contact pressure increases electrical and thermal contact resistance
- High contact pressure hinders mass transfer resistance due to loss of porosity
- Finding optimal compression is a balancing act!
- The pressure distribution is rarely uniform
 - On millimeter scale
 - Ridge-channel structure
 - On larger scale

HELSINKI UNIVERSITY OF TECHNOLOGY Department of Applied Physics Cell cross section view

Background and goals

- Measuring compression pressure distribution is laborious and can be done only close to room temperature
- Modeling provides a faster and cheaper way to predict the pressure distribution
 - Provided that a valid model and material parameters are available
- We have a model for that!
- Here, we demonstrate
 - A method to even out the pressure distribution
 - The effect of temperature on the pressure distribution

The physics

 $\nabla \cdot \left(D \nabla \mathbf{u} \right) = 0 \qquad D = \frac{E}{(1+)(1-2)} \begin{bmatrix} 1- & 0 & 0 & 0 \\ & 1- & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} - & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} - & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} - & 0 \end{bmatrix}$

- Solid, Stress-Strain application mode
 - Isothermal, linear elasticity, isotropic materials
 - Input measured Young's moduli and Poisson's ratios
 - Solved for displacement field u
- Boundary conditions
 - Clamping force as a area load around the bolt holes
 - Symmetry conditions where applicable

- A contact pair condition between rigid components

The model

• Model geometry fashioned after an existing fuel cell stack

Model subdomains

The mesh

- ~200k tetrahedral mesh elements
- ~420k degrees of freedom,
- ~4 h solution time with PARDISO solver on an Intel Core 2 Quad Q9550 + 8 GB RAM

Modeled case 1 The effect of the pressure equalization layer

- A 5 mm fluoropolymer layer between the end plate and current collector evens out the variations in clamping force
- The equalization layer is much softer than the other components

Modeled case 1

The effect of the pressure equalization layer

Pressure distribution on the flow field plate surface

Pressure unit: bar

Modeled case 2 The effect of temperature

Young's moduli depend on temperature

т	Graphite		Fluoropolymer		PPS + 40% GF	
 (°C)	E (GPa)	Change (%)	E (MPa)	Change (%)	E (GPa)	Change (%)
23	2.10 ± 0.05	0	12.96 ± 0.47	0	13.07 ± 0.25	0
80	2.16 ± 0.03	2.7	7.89 ± 0.28	-39.1	11.01 ± 0.25	-15.8
120	2.08 ± 0.04	-1.3	8.08 ± 0.28	-37.7	7.17 ± 0.25	-45.1
160	1.64 ± 0.16	-22.2	8.96 ± 0.27	-30.9	5.29 ± 0.25	-59.5

Modeled case 2 The effect of temperature

Pressure distribution on the flow field plate surface

Pressure unit: bar

Conclusions

- Thermal expansion is not significant at these temperatures
- The equalization layer really makes a difference!
- Uniformity of pressure distribution at assembly temperature not enough!
 - Softening of cell components with increasing temperature leads into more uneven pressure distribution
- This model can be used for optimizing clamping systems also for high temperature fuel cells provided that material data is available

Bonus slide 1: Geometry details

Force per bolt in kN.

Bonus slide 2: The effect of the contact pair boundary condition

Pressure unit: bar

