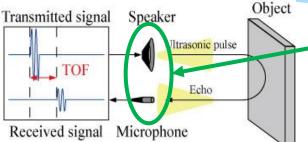
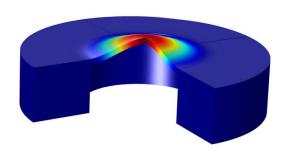
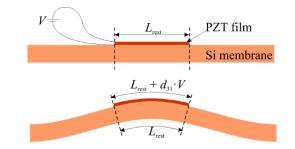
COMSOL CONFERENCE 2017 ROTTERDAM

Time-dependent study of pressure waves generated by square array MEMS ultrasound transducers

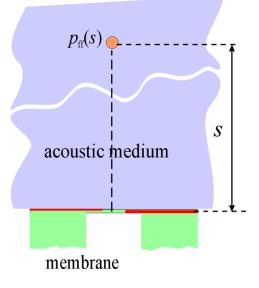

Matthijs Suijlen, Reinout Woltjer Novioscan, Nijmegen, The Netherlands matthijs.suijlen@gmail.com


Development of piezo-electric MEMS ultrasound transducers (PMUT)


Echo sounding application in human body

Functions combined in ultrasound transducer

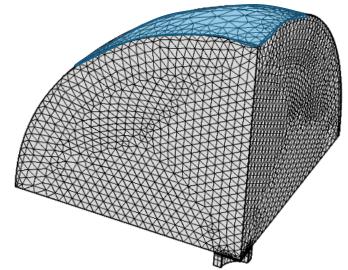
• PMUT with large number of circularly clamped silicon membranes



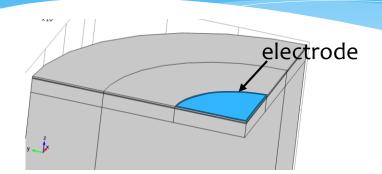
Radiation pressure amplitude in far-field $p_{\rm ff}$

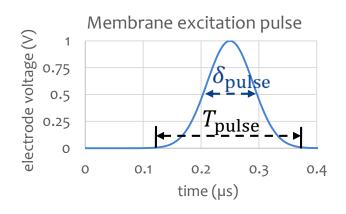
Cylindrical piston approximation: $p_{ff}(s) = \rho_{aco} c_{aco} \frac{A_{piston}}{\lambda_{aco} s} u_{avg}$ given $\frac{A_{piston}}{\lambda_{aco} s} \ll 1$

How to find u_{avg} ? Build a COMSOL simulation model!



COMSOL 5.2 simulation model

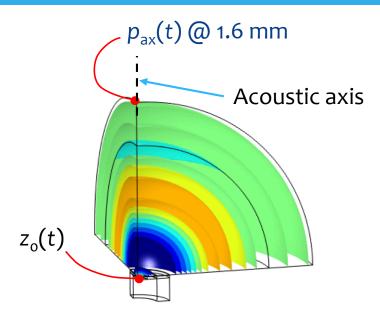

- 3D model set up from the predefined Acoustic-Piezoelectric Interaction, Transient interface
- Hemispherical water domain to simulate human tissue volume
- Free tetrahedral mesh to ensure isotropic solution conditions for radiated pressure waves
- Spherical wave radiation condition on shell surface


~160k quadratic elements, ~6.5 GB physical memory

Pulse excitation on membrane electrode

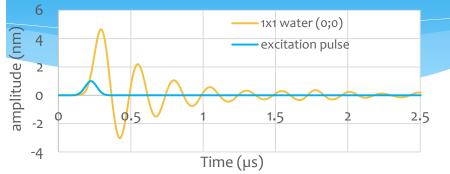
Gaussian pulse shape used $V(t) = V_0 \cdot e^{-2\pi^2 (f_{\text{pulse}}t-1)^2}$

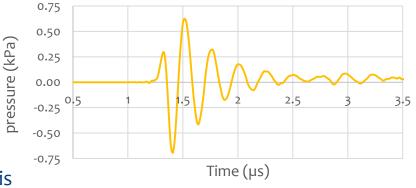
•
$$V_0 = 1.0 \text{ V}$$


•
$$f_{\text{pulse}} = 4.0 \text{ MHz}$$

•
$$\delta_{\text{pulse}} = \frac{1}{\pi \cdot f_{\text{pulse}}} = 0.080 \, \mu \text{s}$$

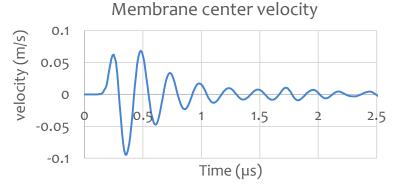
•
$$T_{\text{pulse}} = \frac{1}{f_{\text{pulse}}} = 0.25 \,\mu\text{s}$$


Simulation output for 1.0 V excitation pulse

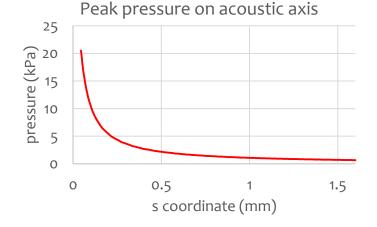

Study in time of:

- Membrane center displacement $z_o(t)$
- Acoustic pressure amplitude p_{ax}(t) on intersection of shell surface with acoustic axis

Displacement amplitude membrane center



Single membrane peak far-field pressure @ 0.10 m

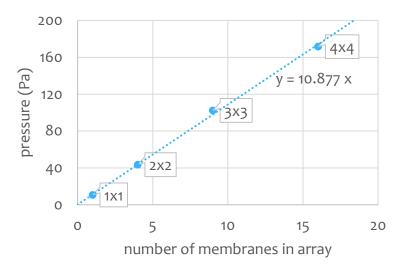

Calculation from membrane center peak velocity $u_{\text{peak,cent}}$ using:

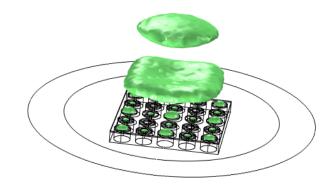
- $p_{\text{peak,ff}}(s) = \rho_{\text{water}} f_{\text{wave}} \frac{A_{\text{piston}}}{3 s} u_{\text{peak,cent}}$ for s = 0.10 m
- $|u_{\text{peak,cent}}| = 0.09 \frac{\text{m}}{\text{s}}$ and $f_{\text{wave}} = 4.0 \text{ MHz}$ in simulated result

• $p_{\text{peak,ff}}(0.10 \text{ m}) = 11.4 \text{ Pa}$

 $\frac{1}{s}$ -extrapolation of simulated peak pressure values along central (acoustic) axis edge:

19-10-20


• $p_{\text{peak,ff}}(0.10 \text{ m}) = 10.9 \text{ Pa}$

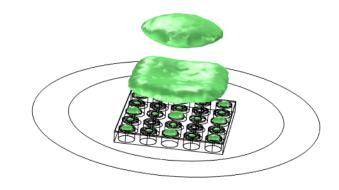

Results for square lattice n×n membrane array

Peak far-field pressure @ 0.10 m for:

1. 2×2, 3×3 and 4×4 simultaneous excited membranes

Acoustic pressure isosurface radiated from 5×5 simultaneous excited membranes

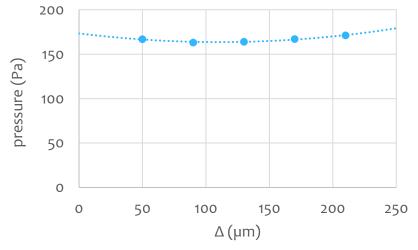

Peak far-field pressure linearly proportional to number of membranes!

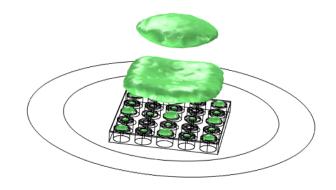

Results for square lattice n×n membrane array

Peak far-field pressure @ 0.10 m for:

2. Variable T_{pulse} on 4×4 simultaneous excited membranes

Acoustic pressure isosurface radiated from 5×5 simultaneous excited membranes


For pulse duration close to the membrane's natural vibration period, transfer of movement to pressure is strongest!


Results for square lattice n×n membrane array

Peak far-field pressure @ 0.10 m for:

 Variable membrane spacing distance ∆ on 4×4 simultaneous excited membranes

Acoustic pressure isosurface radiated from 5×5 simultaneous excited membranes

Peak far-field pressure appears to be minimum for Δ = 100 µm = D_{memb} !

Conclusion

Presented simulation model brings:

- An accurate and flexible tool to calculate the far-field acoustic peak pressure for PMUTs
- A rich collection of data on membrane displacement and pressure variations in the acoustic (water) domain to study during experimental measurements on the prototype PMUTs

Thanks for your attention

