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Gas particle

High pressure tank
(initially)

Low pressure tank
(initially)

Model the flow to:

> Study the sensitivity to the dimensions of the system;
~ Understand the behavior of the gas flow, the time to reach the equilibrium;,
> Coupling with others physics: e.qg. chemistry, ... etc
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The Flow Study and its Issues

oT

i +V-(pu)=0 pep(— +uVT)

ot ot M = oRT
p52+meu+Vp=nAu V-QVT%+52+qu
Navier-Stokes Equations

(Mass and momentum Energy balance Constitutive law
balances)
Precise description of the movement!
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The Flow Study and its Issues

0 oT
—£+V-mm20 pep( 7 +uVT)
ot ot _
= pM = pRT
U Op
/7%41m-Vu+Vp:nAu V-QVT%+52+qu
Navier-Stokes Equations
(Mass and momentum Energy balance Constitutive law

balances)
Precise description of the movement!

Turbulent flow : difficult to
capture numerically
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Numerical modeling

fhat predicts, optfimizes 2nd Innovatres

The Flow Study and its Issues

0 oT
—p+V-(pu) =0 pep(—o- +uVT)
ot ot M = pRT
ou = 9p pM = p
pa—i—pu-VUwLVp:nAu V-()\VT)-I—E—I—qu
Navier-Stokes Equations
(Mass and momentum Energy balance Constitutive law

balances)
Precise description of the movement!

Shockwaves appearing at the
sound speed : it breaks the
continuity hypothesis!

Turbulent flow : difficult to
capture numerically
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Overview

Model derived from an existing 1D approach

A Simplified Model for Real Gas Expansion Between Two Reservoirs Connected by a Thin
Tube, S. Charton, V.Blet et J. P. Corriou, 1995
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Pipe modeled by a segment —> No turbulences to handle

Location of the discontinuity given Possibility to introduce the

by a theoretical development discontinuity
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Model derived from an existing 1D approach
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A Simplified Model for Real Gas Expansion Between Two Reservoirs Connected by a Thin

Tube, S. Charton, V.Blet et J. P. Corriou, 1995

Tanks as points -

Pipe modeled by a segment

Location of the discontinuity given
by a theoretical development

=
—

No turbulences to handle

Possibility to introduce the
discontinuity

How to model the gas flow, the tanks and the discontinuity within COMSOL?
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Gas Flow Within the Pipe

Op | O(pu) _
ot * or B

Mass variation

Mass balance 0
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Gas Flow Within the Pipe

dp  O(pu
Mass balance + ( ) =0

\815 ox .

Mass variation
" ol ou i ou f u Op
omentum balance Pl = +tu— ) = Dlulu ——
ot ox 2d ox
Mass X acceleration Friction forces Pressure

(w/ viscosity) drop
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Gas Flow Within the Pipe

Op | O(pu)
Mass balance + =0

ot or

Mass variation
" ou i ou f u Op
omentum balance P\ = u— | = Dlulu ——
ot ox 2d ox
Mass X acceleration Friction forces Pressure

(w/ viscosity) drop
c - 8T+ oT 0 )\8T f|\ +(9+0p
ner alance C U — ulu
9y "\t T "or ) 0z \"ox, ot ou
Internal energy variation Heat transfer by Friction forces Pressure work
diffusion work
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Gas Flow Within the Pipe

Op | O(pu)
Mass balance + =0

ot or

Mass variation
" ol ou i ou f u Op
omentum balance — u— | = plulu ——
P\ot " "oz ) ~ " 2d Oz
Mass X:cceleration FFICtIOFIrfOFCES Pressure

(w/ viscosity) drop
c - 8T+ oT 0 )\8T f|\ +(9+8p
ner alance C U e ulu
9y "\t T "or ) 0z \"ox, ot oz
Internal energy variation Heat tr;;sfer by Frictionvforces Pressu‘r(e work
diffusion work
Constitutive law (ideal gas assumption) pM = pRT
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Gas Flow Within the Pipe

Op | O(pu)
Mass balance + =0

ot or

Mass v;riation
" ol ou i ou f u Op
e U—— | = U — =
omentum balance P ot O Y D Oz
Mass X:cceleration FFICtIOFlrfOFCGS Pressure

(w/ viscosity) drop
E bal c 8T+u8T 0 )\aT f || —I—(9 +u op
nergy batance "\t T "or ) 0z \"ox, ot " "ox
Internal energy variation Heat tr;;sfer by Frictionvforces Pressu‘r(e work
diffusion work

Constitutive law (ideal gas assumption) pM = pRT

ODE and PDE interfaces

N8 COMSOL o

Pipe Flow Module interfaces
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Exterior

Tank in OD Junction with the pipe
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Tanks as Points

Exterior

OD means a spatial uniformity of:
pressure, temperature and density!

Tank in OD Junction with the pipe
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Tanks as Points

Exterior

OD means a spatial uniformity of:
pressure, temperature and density!

Tank in OD Junction with the pipe

C
c9p
Mass Balance V el —puA
W
Mass variation Mass flow at
the junction
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Tanks as Points

Exterior

Tank in OD Junction with the pipe

Mass Balance

C VC' a(pCTC) _
! Ot

\ 7
N/

Energy balance

Internal energy variation

SIMTEC INTRODUCTION

FLOW MODELING

ical modeling - “"’P

that predicts, optimizes and INnnovates

OD means a spatial uniformity of:
pressure, temperature and density!

op°
Vel = —pud
ot -

o —

Mass variation Mass flow at

u2 the junction
—puA (cpT + ?> + hG,SY(TF —T9)

" — e —) . N

Heat transfer
by convection

Transfer of Heat exchanges with
kinetic energy the exterior
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Tanks as Points

Exterior

OD means a spatial uniformity of:
pressure, temperature and density!

Tank in OD Junction with the pipe

c9p
Mass Balance %4 5 —puA
o —
Mass variation Mass flow at
the junction
o(pC T u?
Energy balance e, VE (pﬁt ) = —puA | c, T + ) + hG,SY(TF —T9)
N ~ - —— —— ~~
Internal energy variation Heat transfer Transfer of Heat exchanges with
by convection kinetic energy the exterior
Constitutive law (ideal gas assumption) pCM — ,OCRTC
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Tanks as Points

Exterior

OD means a spatial uniformity of:
pressure, temperature and density!

Tank in OD Junction with the pipe

c9p
Mass Balance %4 5 —puA
o —
Mass variation Mass flow at
the junction
O C’TC’ u?
Energy balance e, VE (pat ) = —puA | c, T + ) + hG,SY(TF —T9)
N ~ - —— —— ~~
Internal energy variation Heat transfer Transfer of Heat exchanges with
by convection kinetic energy the exterior
Constitutive law (ideal gas assumption) pCM — pCRTC
B COMSOL  opEinterface
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Handle the Discontinuity

Subsonic

plB, = P~
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1 Critical up

]\40,|B2 =1

Subsonic

plB, = P~
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1

Critical up (b) plg, > p"

]\40,|B2 =1

Subsonic

plB, = P~
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1 Critical up

]\40,|B2 =1

(b) 10|B2 > pR

Subsonic

plB, = P~

Critical down (C) p|Bz =P
p|B2 — pR
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1

Critical up (b) plg, > p"

]\40,|B2 =1

Subsonic

plB, = P~

(d) Ma|p, <1 Critical down (¢) plB, = p"
p|B2 - pR
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1

Critical up (b) plg, > p"

]\40,|B2 =1

Subsonic

plB, = P~

(d) Ma|p, <1 Critical down (¢) plB, = p"
p|B2 - pR

Conditions modified because of nhumerical issues
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1
(a') Malpg, > 1

Critical up (b) plg, > p"

]\40,|B2 =1

Subsonic

plB, = P~

(d) Ma|p, <1 Critical down (¢) plB, = p"
plp, =p" (c) plB, <p"

Conditions modified because of nhumerical issues
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1
(a') Malpg, > 1

(b) 10|B2 >pR
(b/) p‘B2 > pR + EP

Critical up
]\40,|B2 =1

Subsonic

plB, = P~

(d) Ma|p, <1 Critical down (¢) plB, = p"
(d') Malp, < 1—eMe pls, = p" (c) plB, <p"

Conditions modified because of nhumerical issues
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Handle the Discontinuity

Flow saturated to Mach 1
(second law of thermodynamics)

(a) Ma|p, =1
(a') Malpg, > 1

(b) 10|B2 > pR
(b,) p‘B2 > pR + EP

Critical up
]\40,|B2 =1

Subsonic

plB, = P~

(d) Ma|p, <1 Critical down (¢) plB, = p"
(d') Malp, < 1—eMe pls, = p" (c) plB, <p"

Conditions modified because of nhumerical issues

‘. C O M S O |_ Events interface
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Numerical Aspects

Space Discretization
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Numerical Aspects

Space Discretization

Study of sensivity to the mesh

4

At least homogeneous 1000 nodes

Avoid numerical loss of mass during
the discharge

-0-0-0-0-0-0-0-0-0-0
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Numerical Aspects

Space Discretization Time Discretization

Study of sensivity to the mesh

4

At least homogeneous 1000 nodes

Avoid numerical loss of mass during
the discharge

-0-0-0-0-0-0-0-0-0-0
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Numerical Aspects

Space Discretization Time Discretization

Speed of sound reached
Study of sensivity to the mesh very quickly

U’ Small timestep at the beginning

of the simulation (about 1077s)
At least homogeneous 1000 nodes

Avoid numerical loss of mass during
the discharge

-0-0-0-0-0-0-0-0-0-0
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Numerical Aspects

Space Discretization Time Discretization

Speed of sound reached
Study of sensivity to the mesh very quickly
U’ Small timestep at the beginning

of the simulation (about 1077s)
At least homogeneous 1000 nodes

Avoid numerical loss of mass during

the discharge Gas less agitated after that:

COMSOL chooses well its
C=0=0=0=0—0=0=0=0=0=0 timestep automatically

A1 i t>
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Theoretical Validation

Theoretical results exist by neglecting the friction forces

A. Lallemand, Ecoulements monodimensionnels des fluides compressibles, Techniques de
lingénieur, 2014
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Theoretical Validation

Theoretical results exist by neglecting the friction forces

A. Lallemand, Ecoulements monodimensionnels des fluides compressibles, Techniques de
lingénieur, 2014

Mach (1) - Pipe section (m~2)

1ff — %107
— Model i
et o Ar?ali/tic _2.5
0.8r 16
0.7F — Section -15.5
45
0.6 14.5
0.5f 14
43:5
0.4r 413
0.3F 42.5
42
0.2+ 41.5
0.1+ "
40.5
0 T 1
0 0.2 0.4 0.6 0.8 b
Pipe abscissa (m)
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Theoretical Validation

Theoretical results exist by neglecting the friction forces

A. Lallemand, Ecoulements monodimensionnels des fluides compressibles, Techniques de
lingénieur, 2014

Mach (1) - Pipe section (m~2)

0.4 0.6
Pipe abscissa (m)

x107>  320F

<_ -
— Model 417 Lo
o Analytic =0
’ 165 290

16 280}

— Section 15.5 270
15 260

14.5 250

la 240t

135 230t

13 220

ks 2

i . 190f

: 180

1t 170}

10.5 160}

0 0.2 0.8 1 :

Pressure (bar)

— Model
o Analytic
012 0. 0.6 018 :IL
Pipe abscissa (m)
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Theoretical results exist by neglecting the friction forces
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A. Lallemand, Ecoulements monodimensionnels des fluides compressibles, Techniques de
lingénieur, 2014

Mach (1) - Pipe section (m~2)

0.4 0.6
Pipe abscissa (m)

x107>  320F

<_ -
— Model 417 Lo
o Analytic =0
’ 165 290

16 280}

— Section 15.5 270
15 260

14.5 250

la 240t

135 230}

13 220

ks 2

i . 190f

: 180

1t 170}

10.5 160}

0 0.2 0.8 1 :

Pressure (bar)

— Model
o Analytic

0.2

SIMTEC INTRODUCTION

0. 0.6 0.8 1
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Theoretical Validation

Theoretical results exist by neglecting the friction forces

A. Lallemand, Ecoulements monodimensionnels des fluides compressibles, Techniques de
lingénieur, 2014

Mach (1) - Pipe section (m~2)

Pressure (bar) Temperature (K)

1F X107 320 300
R 3101 295
0.9 Modell =7 300+ 290+
o Analytic 16.5 290} 2851
0.8r 16 280¢ 280F
0.7t — Section 15.5 2701 275F
15 260} 270r
0.6- 14.5 250 265
0.5¢ g ] 260}
I35 230
255}
0.4r J 220+
3 250}
125 2105
190F I
0.2r =1.5 180} 235}
0.1k 11 170} | — Model 230} | — Model
10.5 160l | © Analytic 2251 | © Analytic
0 T 1 1 i i} 1 1 1 220 i | L 1 L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4, 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Pipe abscissa (m) Pipe abscissa (m) Pipe abscissa (m)

The model respects the physics laws!
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First Comparisons with Experiments

Pressure in R (bar)
m " " B N N OB E NN EEE B

— Model - E1 l
= Experiments - E1

— Model - E3
= Experiments E3

20 25
Time (s)
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First Comparisons with Experiments

Pressure in R (bar)
6.5F ' mom 2 E N N R EEEEEEB

2.5¢
2 E
1.5 — Model - E1 ]
' = Experiments - E1
15 Model - E3
0.5 = Experiments E3
0 1 1 1 1 s
0 5 10 15 20 25
Time (s)

The model does not reach the real
equilibrium state
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First Comparisons with Experiments

Pressure in R (bar)

E'EJ " TTTEE R E oo Tracks to explain that
I . |
5.5F B
! [ f * Too reductive assumptions (e.g.
4.5F . .
3L ideal gas law...)
3.5+
3k HE B b . .
e il e oo oot * The dimensions used to feed the
2| model are not correct
1.5 — Model - E1 |
' = Experiments - E1
1_ -
— Model - E3 .
0.5 & Eoen s, 14  Some of the experimental results
0 . . | ! o
5 - = = 5 7 are not accurate enough

Time (s)

The model does not reach the real A mix of them all

equilibrium state
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First Comparisons with Experiments

Pressure in R (bar)

G'EJ " TTTEE R E oo Tracks to explain that
| . |
5.5F B .

5+ ] . s FFooredtretive-assumptions—teg-
4.5F Tl .

3 —eat-gas-tevr—)
3.5+

3k HE B b . .
e il e oo oot * The dimensions used to feed the
2| model are not correct
1.5 — Model - E1 |

' = Experiments - E1

1_ -

— Model - E3 .

0.5 & Eoen s, 14  Some of the experimental results
0 1 ! ! . It

s - = s = 2 are not accurate enough

Time (s)
The model does not reach the real * A mix of them all

equilibrium state
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First Comparisons with Experiments

Pressure in R (bar)

6.5f L NN Tracks to explain that

-]

3 Mg " B @ E @ B B EEEEEESNGEEGSNGUSBHN- o :FI T - | F Y
2.5 T
2 - -FRodetare-Rot-correct—
— Model - E1
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Simulation vs. (Corrected) Experimental

Correction of the initial temperature in the tanks, regarding to the equilibrium
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The results of the model fits to the experiments in pressure!
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Simulation vs. (Corrected) Experimental

Correction of the initial temperature in the tanks, regarding to the equilibrium

Pressure in C (bar) Pressure in R (bar)
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The results of the model fits to the experiments in pressure!

Use of the model to detect experimental flaws
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Conclusions

Numerical difficulties broken using a 1D approach

W8 COMSOL

General enough interfaces to implement it

Validation of the model using theoretical and experimental results

Some weaknesses on the thermal exchanges
Inherent to the OD simplification

The degree of accuracy is satisfaying
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