
Time Dependent Dirac Equation FEM Solutions for Relativistic 
Quantum Mechanics 
 

A. J. Kalinowski*1 
1Consultant 
*Corresponding author: East Lyme CT 06333, kalinoaj@aol.com 

Abstract:  COMSOL is used for obtaining the 
quantum mechanics wave function {Ψm(x,y,z,t)} 
as a solution to the time dependent Dirac equation. 
The probability determination of a particle being at 
a spatial point can be treated by a) the “matrix 
mechanics formulation” or b) the “wave function 
formulation”. The latter approach is used herein, 
because it involves solving field partial differential 
equations, thus is directly adaptable to COMSOL.  
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1. Introduction 

The purpose of this paper is to illustrate the use 
of COMSOL for obtaining the quantum mechanics 
wave function Ψm(x,y,z,t) (representing matter 
waves) as a solution to the time  dependent  Dirac 
equation. Quantum mechanics solutions for the 
probability of a particle being at a particular point 
in space are usually treated through: a) the “matrix 
mechanics formulation” originated by Werner 
Heisenberg or b) the “wave function formulation” 
originated by Erwin Schrödinger. The latter 
approach is the one used herein, mainly because it 
involves solving field partial differential equations, 
and therefore is directly adaptable to COMSOL. 

The Dirac equation is employed in particle 
physics and historically provided the first 
combined application of quantum mechanics and 
relativity theory by introducing a four component 
wave function {Ψm}, m=1,2,3,4 (e.g. in contrast to 
the one component Schrödinger wave function Ψ 
or Klein-Gordon wave function Ψ). Historically, 
{Ψm} described the behavior of fermion type 
particles (e.g., electrons) and further predicted the 
existence of antiparticles (e.g., positrons) even 
before they were observed experimentally. Use of 
COMSOL MULTIPHYSICS®: the Coefficient-
Form PDE "time dependent" study is employed. 
When the wave vector k  lies in the xy plane, the 
four component {Ψm} simplifies into two 
components for m=1&4. COMSOL is then used 

f o r o b t a i n i n g t h e t r a n s i e n t 2 - D 
{Ψ1(x,y,t),Ψ4(x,y,t)} wave propagation evolution 
as a solution to exp(-iωt) upfield boundary driven 
models at frequency ω. There is one  example in 
the COMSOL archives for solving the time 
independent Quantum Mechanics Dirac wave 
function [2]; however, the problems addressed 
here are the first COMSOL application towards 
solving the time dependent Dirac equation. Three 
validation examples (using comparisons to exact 
transient solutions when available or to steady 
state limit solutions as second choice alternative) 
are presented, followed by more complex 
examples without an available exact solution for 
comparison. 

2. Governing Equations 

Governing equations for the behavior of a free 
fermion particle, of mass m, are represented by the 
time dependent quantum mechanics Dirac 
equations (with wave function {Ψm(x,y,z,t)} as the 
dependent variable) and are given by [1]: 

with M=mc/ℏ , c= speed of light,  ℏ =h/(2π), 
(where h is Planck’s constant), and i =√(-1) . 

2.1 Transient time dependent form 
A 2-D form of  governing Eqs.(1) are solved in 

time dependent problems using the COMSOL 
MULTIPHYSICS® Coefficient-Form PDE "Time 
dependent" studies option. Two dimensional 
solutions are sought where the wave function 
depends on spatial coordinates x,y. Therefore 
gradients in the z direction drop out and the 
{ Ψ1(x,y,t),Ψ4(x,y,t) } components are solved with  
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just the 1st and 4th coupled equations of Eqs.(1): 

In [2], the coupled time independent form these 
equations were solved as two simultaneous pde’s 
for Ψ1&Ψ4 . A different uncoupled approach is 
used herein, where after differentiating Eq.(2b) with 
∂( )/∂x & ∂( )/∂y (while introducing scaled time and 
spatial primed independent variables x′,y′,t′); the Ψ4 
terms are eliminated using Eq.(2a), resulting in the 
Eq.(3) pde for Ψ1 alone (we omit primes on 
dependent variables Ψ1, Ψ4,  ρd  hereon) : 

In passing, it is noted that Eq.(3) is the same as the 
relativistic 2-D “Klein-Gordon equation” [1]. 

After solving Eq.(3) for Ψ1 (and its spatial 
derivatives), at an arbitrary point {x′=X′,y′=Y′},  
primed Eq.(2b) is used to post process Ψ4 . It can 
be obtained from the first order in time differential 
equation: 

Equation (4) is solved with Laplace transforms 
resulting in Eq.(5) (with Ψ4(X′,Y′,+0)=0 downfield): 

2.2 Steady State time independent form  
      Substitute Steady State (S.S.) Eqs.(6) into 

Eq.(3), and Eq.(2b), to obtain the Helmholtz like 

pde Eq.(7) for solving ψ1(xʹ,yʹ) . 

Employing  the steady state version of Eq.(2b) at 
arbitrary  point  xʹ=Xʹ, yʹ=Yʹ, the  following 
algebraic Eq.(8) is used for post processing ψ4 : 

(use stored ∂ψ1/∂xʹ, ∂ψ1/∂yʹ from Eq.(7) FEM sol.) . 

2.3 Selection of drive frequency ω and scaling 
parameters T,L  

 Frequency selection: De Broglie’s photon-to-
particle extension of Planck’s relation between 
particle energy Ep and angular frequency ω (i.e. 
Ep= ℏω), along with the relativistic relation 
between Ep and velocity [1], Ep=mc2/√(1-β2), gives: 

for selecting the particle frequency in terms of the 
particle velocity vp via the speed parameter β. 

Scaling Parameters Selection: The scale of the 
solution domain is such that the numerical size of 
both time and space variables are extremely small 
in say standard CGS units. FEM models were 
solved directly in CGS units in [2] and [4]. 
However during the post processing plots phase, 
time and length scales were normalized by the 
time period Tp=2π/ω and spatial wave length 
λp=2π/k (k is wave number) respectively of the 
dominant propagating wave in the problem. 
Equations (3-8) in the scaled prime variables are 
valid for any unit consistent values of (T,L), 
however a convenient choice is to use the time 
period Tp and wave length λp of a propagating 
Dirac Equation plane wave. The magnitude of all 
of the primed variables in the FEM models (both 
in model building, solving, and post processing) 
are then nice size numbers. 

The S.S. exact solution to unscaled Eqs.(2), for 
a plane wave (inclined θinc to the x axis, of 
frequency ω, and traveling in unit vector direction 
n, with position vector r=xi+yj ), is given by [1] ): 

where A is an arbitrary constant. 
As an example, for a plane wave traveling in the 
+x direction, set n= xi, θinc=0, thus ρˆ=x; whereas 
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for a wave in the -x dir., set n= -xi, θinc=π, thus 
ρˆ=-x. 

Therefore after selecting Eq.(9) driver frequency 
ω, the following scale values for T,L are defined: 

3. Method 

The Dirac equation problems are solved in the 
time domain by driving an upfield face of a model 
(that is initially at a zero wave function state) with 
exp(-iω′t′) harmonic loadings, and then track the 
ensuing waves that propagate towards the 
downfield end of the model. 

3.1 FEM Boundary Conditions 
   FEM Wave Generation Driven Surface: transient 
solutions are generated by driving the upfield 
surfaces with time harmonic loadings of the form 

where f(t′) is a gradual time increasing  multiplier 
on the harmonic driver and ψ1(x′s,y′s) is the wave 
function distribution (typically set = 1.0) at surface 
points {x′s,y′s }. This gradual increase is to help 
minimize any suddenly applied loading effects. 
Specifically, the f(t′) time portion is given by: 

with, for example, shaping parameters  of : 

First f(t′) exponentially increases from ε0  to 1.0 
over Nc time cycles ( the [ ] bracket term in first of 
Eqs.(14) ). Then using transition term U2(t′), the 
starting value, f(0)= ε0, is made zero by blending 
f(0)=0 into f(t′w) with a cubic “s-shaped” curve 
ending at t′=t′w . The shape of the input driver, 
using the parameters given in Eq.(15), is shown in 
Fig.(1a). These are the same parameters used in 
the Schrödinger equation time dependent solutions 
[4], that led to a smooth buildup of the surface 
driver. In Fig.(1b), the FFT of the real part of the 

Ψ1 driver shows that the dominant primed 
frequency is at  f′ =1.0 . 

                  Figure 1. FEM Wave Generation Driver 

FEM Model Termination Surfaces: 
(i) absorbing B.C. : transient solutions are often 

terminated with some kind of wave absorbing 
boundary condition such as a plane wave 
absorber like: 

where the unit vector n is normal to the absorbing 
surface and k′ is the wave number of the wave to 
be absorbed. However an advantage of the 
transient solution approach is that unlike the time 
independent steady state solutions, the transient 
solutions can be terminated at a time even before 
the propagating wave hits the downfield boundary. 
Equation(16) can be enforced in COMSOL with 
the Elemental Constraint Method Option, using 
the Flux/Source Boundary Condition with the 
source term g turned off. 
(ii) soft B.C. : Ψ1(x′s,y′s,t′)=0, at surface points    
{x′s,y′s } 
(iii) hard B.C. : normal grad.  n•∇Ψ1(x′s,y′s,t′)=0, 
at surface points {x′s,y′s }, where n is a unit normal 
vector to the hard surface. This constraint can be 
enforced in COMSOL with the Elemental 
Constraint Method Option, using the Flux/Source 
Boundary Condition with both the source term g 
and flux term q turned off. 

3.2 FEM Initial Conditions 
The FEM model is started from rest throughout 

the entire spatial domain 𝒟, therefore: 

It is noted that because of the manner Eq.(13) is 
constructed, evaluating it at t′=0 is consistent with 
Eqs.(17) for both Ψ1(x′s,y′s,0) and ∂Ψ1(x′s,y′s,0)/∂t′. 
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3.3 Probability Computation 
The wave function {Ψ1(x′,y′,t′),Ψ4(x′,y′,t′)} can 

be used to compute the probability PΔA of a 
particle being in a finite area zone,  ΔA′, of space 
for 2-D models. Firstly, the probability density     
ρd (x′,y′,t′) is defined as the probability per unit 
area of the particle being at a particular spatial 
point  {x′,y′}, and is given [1] by  Eq.(18): 

The probability PΔA , can be computed with  Eq.
(19), where the  normalizing factor Λ is set so PΔA 
➞1 when  ΔA′, ➞ A′Total (model total area) [4]. 

3.4 Model Parameters 
All Dirac equation solutions herein use the 

following CGS parameters in the pde’s: c = 
2.998e10 cm/s, ℏ = h/(2π) = 1.055e-27 cm2-g/s and 
the particle (electron) mass m = 9.109e-28 g . 
Since these parameters are held fixed from 
problem to problem, the unprimed drive frequency 
ω is then governed by the remaining particle speed 
parameter β in Eq.(9).  

4. Theory 

The basic building blocks of the Dirac theory 
are freely propagating matter waves such as   
planar and cylindrical ones. For validation cross 
comparison purposes, exact solutions to these 
wave propagation problems are employed as either 
time dependent transient solutions (most difficult 
case therefore only available for plane wave case), 
or as time independent steady state limit reference 
solutions (where FEM vs exact comparisons are 
made after enough time has past so relative 
comparisons can be made).  

   
4.1 Bar Transient Plane Wave (no gradual 
buildup of surface driver) 

Initial FEM transient solutions showed some 
unusual buildup of the transition of the transient  
into the steady state solution. An exact closed form 
solution is needed to insure that this behavior is 
not due to some sort of computational anomaly.  A 
two dimensional bar of length L′ =16 is used as the 
computational domain (see Fig.(2a) inset). An 
exact solution Ψ1(x′,t′) is sought that meets pde Eq.
(3), subject to non-homogenous BC: Ψ1(0,t′)= Ψ10 
exp(-iω′t′) & Ψ1(L′,t′)= 0 for t′ ≥0 and IC’s: Eqs.
(17) for 0≤x′≤ L′. The general method outlined in 
[5] for solving this type pde, converts the problem 
of solving a homogenous pde (zero rhs) with non-
homogenous time driven BC’s -into- having to 

solve a non-homogenous pde (nonzero rhs), with 
zero homogenous BC’s. The newly converted pde 
is then solved with an Eigenfunction expansion 
method. The resulting solution is given by: (apply 
L’Hospital’s limit rule to  Bn if an=ω′) 

Substituting Ψ1 above into Eq.(5) easily gives Ψ4 . 
This same problem (with 3.4 model parameters, β 
=.67 and Ψ10 =1) was solved with the FEM, where 
a FEM-Exact comparison is shown in Fig.(2) as a 
sequence of time frames that illustrates the build 
up of the S.S. solution from the transient one (our 
time range of interest is before the wave hits the 
downfield B.C.). Note if M′=0 in Eq.(3), the wave 
equation would remain. Therefore d’Alembert’s 
solution would be valid which implies the end 
driver wave form would travel undistorted down 
the bar. In contrast, for our M′≠0 case we track  

  Figure 2. FEM vs Exact Wave Prop. vs x′ at 4 times 

the development of the propagated driver wave 
form by observing the two black-red ⬇⬇ crest 
tracer arrows of Fig.(2a). Due to the dispersive  M′ 
term, both the amplitude reduces and peak-to- 
peak wave length changes in later frames Fig.(2b) 
and Fig.(2c). By frame Fig.(2d) at t′=20, the S.S. 
solution starts to take form (the S.S. limit is shown 
dotted in all 4 frames). The leading cycles (follow the 
crest tracers) melt away both in the FEM & Exact 
solutions as the wave propagates down the bar, 
thus showing this feature is not a numerical anomaly. 
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4.2 Effect of Gradual Surface Driver Buildup 
and Particle Velocity β on PW Propagation 

The same FEM problem (except Eq.(16) B.C. 
is used downfield) treated in 4.1 is resolved, where 
the effect of  surface driver gradual build up and 
particle velocity variations are considered here. 
Gradual Driver Buildup: The upfield end face 
driver is the one used in Fig.(1a). The resulting 
FEM solution with gradual buildup (i.e. Nc=2) as 
compared to using no gradual buildup (i.e. Nc=0) 
is shown in Fig.(3b). Note the gradual buildup 
reduces the unwanted leading higher spatial frequency 

    
 Figure 3. Variations of β and Nc on PW Solution 

oscillations due to the suddenly applied Ψ1 driver. 
Variations on Particle Velocity: Fig.(3a) illustrates 
that the smaller the particle velocity (β parameter 
sweep={0.34, 0.67, 0.98}), the longer it takes for 
the steady state to build up. In later FEM demos, 
β=.98 is used to speed up reaching the S.S. limit. 

4.3 Transient PW Reflection Validation 
 A FEM bar model (see Fig.(4a) inset), using 

3.4 model parameters, β =.98, length L′ =8; with 
end driver represented by Eqs.(13-15), is solved. A 
snapshot in time (at t′=20) is shown in Fig.(4) after 
the transient wave has traveled down the bar and 
reflected off the back end hard ∂Ψ1/∂x′=0 B.C. . 
The exact transient solution is not available here, 
however the exact limiting steady state solution [2] 
is given by Eq.(20) and is shown as a background 

dotted curve in Fig.(4). The parameters in Eq.(20) 
are ω′=2π, k′=2π, A=1, R′=k′/[(ω′/c′)-M′] 
=1.2067. After the incident wave interacts with the 
reflecting wave, there is a doubling of the incident 
wave peaks. This solution is important because it 
involves the interaction of two waves (incident 
with reflected) and also illustrates the  accuracy of  

post processing Ψ4 with Eq.(5) (e.g. Fig.(4b) . 

       Figure 4. Transient PW Reflection From Hard BC 

4.4 Transient Cylindrical Wave Validation 
A 2-D cylindrical FEM annular region (of 

inner radius R′i = Ri/L =4 and outer radius R′o = 
Ro/L =9) is uniformly driven on the inside with 
Eqs.(13-15), using 3.4 model parameters, and 
particle velocity parameter β =0.98 . The outside 
surface is terminated with absorbing BC Eq.(16), 
where in [2] it was shown that at a large k′ρ′ 
argument=9, the outward traveling cylindrical 
wave absorbing BC is nearly the same as the PW 
boundary condition. As long as the dominant 
spatial frequency of the outward traveling wave is 
mostly monochromatic (e.g. like Fig.(1b) ), Eq.(16) 
should work well even for a transient problem. In 
the absence of the exact transient solution, the next 
best thing is a comparison to the S.S. limit solution 
by running the FEM model out to say t′=9. The Eq.
(21) exact S.S. limit solution for large k′ρ′ is given 
in [2,3] with A0=1.0 , R′=k′/[(ω′/c′)-M′]: 

where the angular coordinate φ and radial 
coordinate ρ ( ρ′= ρ/L), is shown in Fig.(5c) . The 
FEM solution compared to the S.S. solution limit 
(at time snapshot t′=9), is shown in Fig.(5) for the 
real part Ψ1 and real part Ψ4 of the wave function. 
The Fig.(5c-5d) comparison is significant, because 
even with a uniform Ψ1 loading on the inner 
surface, the FEM solution using the post 
processing Eq.(5), picked up the Ψ4 spiral variation 
in φ with good agreement between the FEM and 
Exact S.S. limit solution. Finally Fig.(6) displays 
good FEM↔Exact S.S. radial l ine plot 
comparisons of re Ψ1 , im Ψ1 , re Ψ4 , im Ψ4 at fixed 
angles of φ=-45˚ and -135˚. 

a)

b)

Excerpt from the Proceedings of the 2017 COMSOL Conference in Boston



 
Figure 5. Transient Cylindrical Wave 2-D Carpet Plot 

Figure 6. Transient Cylindrical Wave Radial Variation 

5. Results  for More Complex FEM Models 

More complex FEM models are presented 
here where there is no exact reference solution 
(either transient or S.S. limit) available. 

5.1 Multiple Cylinder Reflections 
The purpose of this exercise is to illustrate the 

reflection of Dirac waves off of multiple surfaces. 
Firstly, a plane wave is incident upon a single 
cylinder (with hard BC condition iii) of diameter     
d′=2, where the wave is initiated by driving the left 
upfield face with Eqs.(13-15), using 3.4 model 
parameters, and particle velocity parameter β 
=0.98 . The resulting |Ψ1| FEM solution at fixed 
time ( t′=20) is shown in Fig.(7a). Next, the same 
setup is used except the incident wave impinges 
upon three cylinders, all of diameter d′=2, with 
spacing D′x=√12, D′y=8, where the resulting 
interactions are shown in Fig.(7b).  The Fig.(7c) 

case is exactly the same as the Fig. (7b) one except 
the vertical spacing is smaller by a factor of two ,  

    Figure 7. Transient PW incident cylinder cluster 

namely D′x=√12, D′y=4 . In Fig.(7d), a polar plot 
comparison is made at radius R′=√7 (i.e. at dashed 
circle in Fig.(7a) and (7b) ), that compares the |Ψ1| 
results of Fig.(7a) and Fig.(7b). Due to the 
constructive and destructive interactions of wave 
reflections off the back cylindrical surfaces, there 
is much more activity in the peaks and nulls of the 
3 cylinder  case compared to the 1 cylinder case. 

5.2 Transient Double Slit Demonstration 
A classic demonstration of quantum mechanics 

is the two slit experiment. The downfield location 
of an incident particle fired at the slits is simulated 
by passing a transient PW through two slits. The 
wave is initiated by driving the slit portals with 
Eqs.(13-15), (using 3.4 model parameters, and 
particle velocity parameter β =0.98). Using the 
notation in the Fig.(8a) slit inset detail, the model 
parameters are: aperture a′=a/L=0.5, slits center to 
center pitch p′=p/L=4, and entrance slit tunnel 
length d′=d/L=0.2 . Two snapshots in time (at t′=4.1 
and t′=12.2) are shown in Fig.(8a) and Fig.(8b) 
respectively, where the downfield spreading of the 
two (real pt Ψ1) waves emanating from the slits is 
clearly displayed. The Fig.(8c) plot of |Ψ1| , at  t′=20 , 
illustrates the formation of alternating bands of 
constructive and destructive interference. A closer 
look at the interference pattern is obtained by 
taking a vertical slice at x′=1.9 (labeled in Fig.
(8c) ), when t′=20, and plotting the Eq.(18) 
probability density ρd vs y′ (the results for Ψ4 were 
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obtained with Eq.(5) ). Note, the ratio of the ρIL“in 
line with slit” probability density -to- the ρOL 

“average off line” probability density is ρIL/ρOL = 

Figure 8. Transient Double Slit Demonstration 

0.272 (see measurement points 1,2,3 in Fig.(8d) 
where ρIL≡ρd2 and ρOL ≡ (ρd1+ρd3)/2 is the avg. at Δy′=
±.5 ). Thus the probability density for a particle 
being in line with the slit is 0.272 times smaller 
than being off line. This is significant because it 
shows at the atomic scale, particles can behave like 
waves having destructive interference. One might 
otherwise intuitively expect that it is more likely to 
have the particle location (after going through the 
slit) be inline with the slit like one would have 
with large non atomic scale masses passing 
through a large slit.  The bands are not parallel to the 
slits, thus at another cut (x′=3 of Fig.(8c) ),  ρIL/ρOL 
=11.8, hence here the constructive interference 
probability density for a particle being in line with the 
slit is 11.8 times greater than being Δy′=±.5 off line. 

5.3 Steady State Double Slit Demonstration 
Here a two slit problem is solved as a time 

independent problem, where unlike [2] that used 
the S.S. version of coupled Eqs.(2), the uncoupled 
S.S. equations Eqs.(7-8) are used here instead. For 
comparative purposes, the same model used in [2] 
(except for bigger outer boundary truncation 
radius) is resolved here. The wave is initiated by 
driving slit portals with ψ1(t′)= 1.0exp(-iω′t′), 
using 3.4 model parameters, and particle velocity 
parameter β =0.34 . The slit model parameters are: 
aperture a′=1/12, slit pitch  p′=2, and d′=0 . The 
radial outer boundary is terminated at R′=14 with 

cylindrical wave absorbers described in [2]. A 
same scale |ψ1| comparison between the reference 
[2] Fig.(9b) solution (using the coupled first order 
formulation) and the Fig.(9a)  solution (using Eqs.
(7-8) uncoupled formulation) is given in Fig.(9). 
The uncoupled solution appears to be smoother. 
This could be partly due to the larger R′ outer 
boundary placement (R′=14 vs R′=5). 

   
           9. Steady State Double Slit Demonstration 

6. Conclusions 

There is good agreement between exact vs 
FEM solutions for three validation examples. The 
transient formulation has the advantageous option 
of solution termination before having to deal with 
absorbing boundaries. Solution to the incident 
harmonic wave function upon a two slit barrier, 
produced diffraction patterns showing null zone 
bands due to wave destructive interference, thus 
showing the wave like behavior of particles at the 
atomic scale. Post processing the Ψ4  component 
from the solved (i.e. stored) ∂Ψ1/∂x′, ∂Ψ1/∂y′ spatial 
derivatives did not lead to any numerical difficulties 
for either the transient or steady state formulations . 
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