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Abstract: In the paper we examine the accuracy 
of various meshes for different model regions 
and simple differential equations in 2D and in 
3D. We study the potential equation for a single 
irregular domain (2D testcase 1), for a simple 
domain with irregular sub-domains (2D testcase 
2) and a 3D testcase. For testcase 1 we compare 
with the analytical solution, for testcases 2 with 
the best solution, obtained by several adaptive 
grid refinements on a fine mesh. We study 
meshes obtained by global refinements and by 
adaptive grid refinement, using various options 
available in COMSOL Multiphysics. For 
quadratic elements we find convergence rates 
between 1 and 1.5, i.e. significantly reduced in 
comparison to the theoretical rate. Moreover, for 
testcase 1 we examine imported meshes with 
Delaunay property and find no advantages in 
comparison to non-Delaunay meshes for the 
chosen set-up. 
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1. Introduction 
 
The accuracy of a numerical solution for a given 
level of grid refinement depends, among other 
factors, on the mesh quality.  
We examine two test problems for the Laplace 
equation, one in 2D and one in 3D, as a classical 
partial differential equation and a generalized 
problem with an inhomogeneous material 
property. Both test problems represent typical 
problem constellations with applications in 
various fields, from electrostatics, porous media 
flow to fluid dynamics.  
We explore various model approaches, 
concerning Lagrange Finite Element, and 
meshing techniques. We demonstrate the gain 
from using adaptive meshing. We also compare 
with theoretical results: for most models the 
convergence order lies between 1 and 1.5 (for 
default quadratic elements), i.e. between a linear 
and a quadratic increase of accuracy with the 

spatial grid size. Moreover we explore models 
with imported Delaunay meshes.  

 
 
Figure 1: Sketch of a Delaunay mesh and 
Voronoi diagram  
 
A special mesh is called Delaunay mesh whose 
elements satisfying the Delaunay criterion (also 
called the "empty sphere criterion"). Let V be a 
finite set of vertices in d

ℝ . A simplex σ in V is 
called Delaunay if it has a circumscribed sphere 
such that no vertex of V lies inside it. A 
Delaunay triangulation for V consists of 
Delaunay simplices in V (Delaunay 1934). 
Delaunay triangulation has many optimal 
geometrical properties (Rajan 1994). For 
example, it's dual is a Voronoi diagram. Their 
relation is shown in Figure 1. In 2D, if no 4 
vertices of V share a common sphere, the 
Delaunay triangulation of V is unique, and it 
maximizes the minimum angle among all other 
possible triangulations of V. In function 
interpolation, the Delaunay triangulation 
minimizes the interpolation error among all other 
triangulations of the same set of vertices. 
 
2. Convergence and Order Mesh Quality 
 
The convergence order ϑ is defined by the 
relationship 

( )e O hϑ=  (1) 

where e denotes the error, ..  a norm, and h the 

typical element size. The convergence order is a 
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measure for the improvement of the solution as a 
consequence of mesh refinement.  
In order to determine the convergence order from 
numerical runs, the errors of runs with different 
refinement level have to be related. For irregular 
meshes, instead of the mean element size one 
may alternatively use the degrees of freedom 
(DOF) for the determination of the convergence 
rate. The mean grid spacing h decreases with 
number of DOF. Jänicke & Kost (1996, 1999) 
use the formula 
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where subscripts denote run number. Formula 
(2) is valid for 2D problems and has to be 
replaced by corresponding formulae for 1D or 
3D problems (Bradji & Holzbecher 2008).  
The convergence of a numerical solution of one 
or several partial differential equations generally 
depends on various characteristics of the 
problem, on the numerical algorithm, on the 
mesh refinement and on the mesh quality.  
There are two mesh quality measures calculated 
by COMSOL. The element quality q for a 
triangle is obtained by:  
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where A denotes the area, and h1, h2 and h3 the 
sidelengths. For an 'optimal' equilateral triangle q 
becomes 1 and is less, but positive, otherwise. A 
measure for the mesh is the minimum element 
quality. The other quality measure, reported by 
COMSOL, is the element area ratio. In the 
following we only refer to the q-measure, as 
defined by formula (3). In 3D, for a tetrahedron 
the quality measure is evaluated using the 
formula  
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where V denotes the volume, and the h's the edge 
lengths. 
 
3. Test-cases 
3.1    2D Testcase 1 
 
The first test problem concerns the Laplace 
equation  

2 0u∇ =   (5) 

Equation (5) may be used for several types of 
applications. u may represent the hydraulic 
potential of Darcy flow in porous media or of 
potential flow in general, or the electric potential 
in a problem of electrostatics. The unknown 
variable u may also represent the steady state 
concentration distribution for a diffusion 
problem between two reservoirs at constant 
values or stand temperature in a heat conduction 
problem. 
 

 
 
Figure 2: Sketch of model regions for testcase 1 
 
The colored part of Figure 2 shows the model 
region for testcase 1. There are boundary 
conditions of Dirichlet type at the upper and 
lower sides of the shown geometry and 
Neumann type conditions at all other boundaries. 
The constriction of the region geometry in the 
center part is a challenge for the numerical 
algorithm, as the solution shows steep gradients 
there, while the gradients near the top and 
bottom boundary are marginal in relation.   
 

 
Figure 3. Result for testcase 1, analytical solution 
 
There is an analytical solution for equation (5). 
This can be obtained from Schwarz-Christoffel 
mapping to an rectangle (Driscoll & Trefethen 



2002). For that purpose we use the Schwarz–
Christoffel toolbox (Driscoll 1996), implemented 
in MATLAB®. A surface plot of the solution is 
given in Figure 3. 
The initial mesh consists of 506 elements and is 
refined four times by regular refinement, where 
the no. of elements increases by a factor of 4 by 
each refinement. The minimum quality index for 
all simulations is 0.701, and the element area 
ratio is 0.21.  
For all meshes the error in least square-norm is 
evaluated on the same coarse triangulation of the 
model region. An overview on the meshes, the 
errors and the resulting convergence rates is 
given in Table 1. 
 
Table 1: Results for the testcase 1, default 
settings (i.e. quadratic elements)  

Refine-
ments 

DOF No. 
elements 2

e  

104 

ϑϑϑϑ 

0 1085 506 301  

1 4193 2024 129 
1.25 

2 16481 8096 69 
0.9
1 

3 65345 32384 36 
0.94 

4 260225 129536 13  
2.9
7 

 
Except from the last refinement step, the 
convergence order lies around 1, which is 
significantly below the theoretical value of 2 
(Ciarlet 1991). This can clearly be attributed to 
the constriction of the model geometry.. 
Further runs were performed in order to check 
Delaunay meshes. Delaunay meshes are not (yet) 
an option in COMSOL, and have to be produced 
by other software. For our computations we 
chose the ‘triangle’ code (Shewchuk 2008).  
Tables 2 to 4 show results for Delaunay meshes 
of different resolution, produced by the ‘triangle’ 
code; Table 2 for linear and Tables 3 and 4 for 
quadratic elements. The meshes were imported 
into COMSOL using the converter-code ‘readtri’ 
of J. Krause (2006), written in MATLAB (2007). 
The minimum quality ratio lies at 0.41, except 
for the finest mesh, where it increases to 0.44. 
The element area ratio decreases from 0.364 for 
the coarsest mesh to 0.305 for the finest mesh. 
'Triangle' was used with default options (pa) 
first. Meshes of improved quality were produced 

with the –D option, and the option to restrict 
angles to 30° (q-option).  
 
Table 2: Results for the testcase 1, Delaunay 
mesh, linear elements, COMSOL 3.3 

Mean 
elem. size 

DOF No. 
elements 

e 2 

104 

10-3 466 833 27000 

10-3/2 917 1693 580 

10-3/4 1788 3375 388 

10-3/8 3529 6783 271 
 
Table 3: Results for the testcase 1, default 
Delaunay mesh, quadr. elements, COMSOL 3.3 
 

Mean 
elem. size 

DOF No. 
elements 

e 2 104 

10-3 1764 833 26897 

10-3/2 3526 1693 126 

10-3/4 6950 3375 101 

10-3/8 13840 6783 78 
 
The coarse mesh simulations with Delaunay 
meshes deliver poor results, which are 
significantly improved on the next finer mesh. 
However, tests with further refined meshes give 
poor improvement rates for Delaunay meshes. 
This observation holds for linear and quadratic 
elements. The convergence rates, using Delaunay 
meshes, are much smaller than those with default 
COMSOL regular mesh refinements.  
The reason for the poor performance of the 
Delaunay meshing can probably be attributed to 
the fact that the meshing procedure is less 
adapted to the special structure of the examined 
test-case, i.e the constriction of the domain. They 
are much more oriented to cover the entire 
domain with triangles of similar size and quality. 
This is done at each refinement level again, as 
the Delaunay property is not inherited to finer 
meshes by using regular grid refinement. 
COMSOL, in contrast, takes the varying 
thickness of the domain into account: especially 
for the coarsest mesh the contrast in element size 
is high. This high contrast, which is the clue for 



highly accurate results, is kept by regular grid 
refinements, as they were performed in this test. 
 
Table 4: Results for the testcase 1, improved 
Delaunay mesh (D-option), quadratic elements, 
COMSOL 3.3, *: last row with q-option in 
addition. 
 

 
Only for smallest DOF high quality meshes 
(‘triangle’ q-option) led to more accurate results 
than the one examined before. For finer meshes 
the methods deliver only marginally more 
accurate results. 
 
3.2  2D Testcase 2 
 
The second testcase is 2D also. The material 
constant σ involved in the differential equation 

( ) 0uσ∇ ∇ =   (6) 

is inhomogeneous. A sketch of the model region 
is given in Figure 4. In the upper and lower 
white regions σ takes low values (10-4 and 10-5 
respectively), while it is equal to unity in the 
intermediate (colored) region.  
 

  
Figure 4: Sketch of model regions within the unit 
square for testcase 2 
 

Again the problem can be conceived as a simple 
model study originating from various application 
fields. In porous media flow σ stands for 
hydraulic conductivity and the problem 
considers fluid flow through a system of three 
different porous media. In electrostatics σ 
represents the dielectricity of the different media; 
and in diffusion problems it stands for solute or 
thermal diffusivity.  
There is no analytical solution for this set-up. 
Therefore we construct a reference soltion, to 
compare with, by the numerical method. The 
reference solution is obtained with several 
default adaptive mesh refinements with quadratic 
elements. The final mesh is extremely fine in the 
center of the model region and has 73399 
elements and 147072 DOF.  
 
Table 5: Results for the testcase 2 with linear 
elements 

 
For all other meshes to be examined the error in 
L2-norm is evaluated on an equidistant grid with 
mesh-spacing 1/80. 
 
Table 6: Results for the testcase 2 with quadratic 
elements  

 
Table 5 and 6 show results for global mesh 
refinements using the default options, for linear 
(Table 5), and for quadratic elements (Table 6). 
The convergence rate for linear elements lies 
constantly at about 1.2. The convergence order 
for the quadratic elements lies only marginally 

Mean 
elem. size 

DOF No. 
elements 

e 2 

104 

10-3 1849 854 177 

10-3/2 3535 1678 133 

10-3/4 6977 3352 102 

10-3/8 13805 6728 73 

10-3/8* 14257 6954 75 

Refine-
ments 

DOF No. 
elements 

e 2 104 

ϑϑϑϑ 

0 500 938 2302  

1 1937 3752 996 
1.22 

2 7625 15008 433 
1.23 

3 30257 60032 188 
1.21 

4 120545 240128 79  
1.25 

Refine-
ments 

DOF No. 
elements 

e 2 

104 
ϑϑϑϑ 

0 1937 938 593 
 

1 7625 3752 256 
1.22 

2 30257 15008 110 
1.23 

3 120545 60032 44 
1.33 

4 481217 240128 14  
1.65 



above the order for the linear elements, 
especially for the first two refinements. It is 
increasing from one refinement to the next, but 
still far away from the theoretical value of 2. 
In further runs adaptive mesh strategies were 
examined. A characteristic result is presented in 
Table 7. It shows that after several adaptive steps 
the error reduces only slightly. Although the 
number of elements is more than doubled during 
the 5th refinement, the accuracy is not improved. 
 
Table 7: Results for testcase 2 with adaptive 
meshing, linear elements, residual method: weak, 
refinement method: longest, element selection 
method: rough global minimum (parameter 1.7) 

Refine-
ments 

DOF No. 
elements 

e 2 

104 
ϑϑϑϑ 

0 500 938 2302  

1 1555 3026 318 
3.49 

2 4064 8002 155 
1.50 

3 9729 19268 137 
0.28 

4 21797 43318 132 
- 

5 46840 93313 132 
- 

 
 
After only two adaptive refinements with a mesh 
of only 8000 elements a higher accuracy is 
reached than with a mesh of more than 60000 
elements, obtained by global refinement. 
However with the following mesh refinements 
the comparative advantage of the adaptive 
meshing becomes much smaller. 
Before continuation with a similar study for 
quadratic elements, various options for mesh 
refinement were checked. For adaptive grid 
refinements we examined various combinations 
of residual and refinement methods. For the first 
two refinements of the coarse mesh the results 
are compared in Table 7. The meshes are refined 
most by the ‘longest’ refinement method. After 
two refinements the same accuracy is reached by 
all examined variants, but with different mehs 
sizes. From the observation the ‘regular’ 
refinement method, combined with ‘coefficient’ 
residual method can be evaluated to be best for 
the testcase.  
The results of an examination study of adaptive 
mesh refinements for quadratic elements are 
given in Table 9. Obviously higher order 
elements perform better with adaptive 
refinements. The accuracy improves up to the 

11th refinement. With further refinements no 
further improvement is obtained, although the 
mesh increase factor is highest. 
 
Table 8: Results for testcase 2, adaptive 
refinements for quadratic elements, selection 

method: rough global minimum (parameter 1.7) 
 
Altogether we reach the same conclusion, as for 
the linear elements: after a certain number of 
adaptive refinements the solution does not 
increase. However, the gain from the adaptive 
strategy is convincing: a better accuracy is 
obtained with a mesh consisting of 1566 
elements than with a mesh of more than 240000 
elements using a global refinement strategy 
(compare Table 6).  
 
Table 9: Results for testcase 2 for quadratic 
elements, residual method: coefficient, 
refinement method: regular, element selection 
method: fraction of worst error (parameter 0.5) 

 

Refine-
ments 

Residual 
method 

Refinem. 
method 

DOF No. 
elements 2ue  

104 

1 weak longest 6971 3454 21 

2 weak longest 21840 10867 7 

1 weak regular 5505 2722 45 

2 weak regular 14395 7152 7 

1 coeff. regular 5107 2522 45 

2 " regular 12749 6326 7 

Refine-
ments 

DOF No. 
elements 

Mesh 
increase 

e  

1 1997 968 1.032 284 
2 2089 1014 1.048 133 
3 2133 1036 1.022 125 
4 2185 1062 1.025 64 
5 2301 1120 1.055 55 
6 2401 1170 1.045 35 
7 2517 1228 1.050 24 
8 2577 1258 1.024 21 
9 2773 1356 1.078 20 
10 2973 1456 1.074 12 
11 3193 1566 1.076 10 
12 3505 1722 1.100 10 
13 3829 1884 1.094 10 



3.3 3D Testcase 
 
Take the triangle with positions (0,0), (-1,-1) and 
(-1,0) in (x,y) axis for z=0; extrude in z-direction 
to level z=1 and twist at the same time by α= 
165° (=11π/12). The resulting 3D domain is 
narrow near the middle level of z=0.5, compared 
to the ‘ends’ at z=0 and z=1. If one applies a 
potential difference (again 0 and 1), and sets all 
other boundaries to isolators (no flow Neumann 
condition), one obtains a potential field that has 
almost no gradient near the ends. In the middle 
there are steep gradients.   

 
Figure 5: Model region for 3D testcase, with 
mesh quality visualisation 
 
We examine the potential along the line, which 
connects the two center points at both ends, 
given by (-0.5,-0.25) at the z=0 level and 
0.5*1.118*(cos(αɶ ), sin(αɶ )) with αɶ =π+.4636-
11π/12 at the z=1 level. The length 1.118 and the 
angle .4636 belong to the center line of the 
original triangle, which connects the origin with 

the position (-1,-0.5: 21 0.5 1.118+ = , 
atan(0.5)=0.4636 (26.565°). The errors, reported 
in the following are computed from on 400 
positions along that line (least squares).  
Tables 10 and 11 list the results for the 3D test-
case, performed using COMSOL 3.4. We varied 
the initial mesh, used regular and adaptive mesh 
refinement strategies and switched the 'quality 
optimization' option on and off. The list provides 
mesh quality according to formula (4) and errors. 
Table 10 lists results for the default FE option 
with second order Lagrange elements. Table 11 
for linear elements. Note that the 'longest' is the 
default mesh refinement option in 3D! 
For coarse meshes, linear element solutions 
sometimes have less error than quadratic element 
solutions. However, with grid refinement the 
performance order changes, as expected. Even, if 

the convergence order is below the expectation 
from theory, the improvement with grid 
refinement is higher for quadratic elements than 
for linear elements. 
 
Table 10: Results for 3D testcase for quadratic 
elements.  
 

 
Quality optimization is an additional step, which 
requires computational work only in the mesh 
mode. The size of the resulting mesh is mostly 
slightly smaller, while the mesh quality is 
significantly improved (see column 5) 
The gain in mesh quality does not always lead to 
improved accuracy. Especially for coarse meshes 
the result for the optimized mesh is sometimes 
less accurate than the original mesh. However, 
for fine meshes, optimization pays off (compare 
'finer' and 'extra fine' meshes).   

Mesh 
& 

Refine-
ments 

DOF Quality 
optim. 

No. 
elements 

Mesh 
quality 

e 2 

102 

extra 
coarse 

381 - 162 0.0846 16.8 

coarser 573 - 253 0.0508 12.5 
coarse 765 - 352 0.0567 9.72 
normal 1461 - 714 0.0561 2.28 

fine 2821 - 1492 0.0248 0.79 
finer 6668 - 3849 0.0270 0.22 
extra 
fine 

18896 - 11801 0.0192 0.09 

extra 
coarse 

382 + 161 0.2030 17.9 

coarser 572 + 250 0.1934 12.2 
coarse 757 + 342 0.0697 9.61 
normal 1425 + 676 0.1814 1.69 

fine 2736 + 1407 0.2049 0.81 
finer 6452 + 3633 0.1954 0.11 
extra 
fine 

18158 + 11063 0.2191 0.06 

normal 
& ref.1 

4527 - 2636 0.0405 2.10 

fine & 
ref. 

9192 - 5578 0.0205 0.57 

finer & 
ref. 

23552 - 15155 0.0223 0.078 

coarser 
& ref. 

1656 + 880 0.0899 8.85 

normal 
& ref 

4289 + 2465 0.1174 2.02 

fine & 
ref. 

8686 + 5197 0.1084 0.28 

finer & 
ref. 

22415 + 14270 0.1373 0.035 

extra 
fine & 

ref. 

63818 + 42183 0.1404 0.022 

z 



Table 11: Results for 3D testcase for linear 
elements  
  

 
4. Summary 
 

� The convergence rate for linear 
elements is ≈1.2 

� For quadratic elements the convergence 
rate is only slightly increased in 
comparison to linear elements, and 
mostly lies significantly below the 
theoretical value of 2 

� In comparison to globally refined 
meshes adaptive techniques deliver 
results with same accuracy, but with 
significantly lower DOF 

� Multiple application of adaptive 
meshing shows reduced improvement 
with each application   

� Delaunay meshes do not offer 
advantages  

� Mesh quality optimization is 
recommended  
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Mesh 
& 

Refine-
ments 

DOF Quality 
optim. 

No. 
elements 

Mesh 
quality 

e 2 

102 

extra 
coarse 

74 - 162 0.0846 2.21 

coarser 108 - 253 0.0508 2.21 
coarse 140 - 352 0.0567 1.46 
normal 255 - 714 0.0561 0.55 

fine 464 - 1492 0.0248 0.42 
finer 1028 - 3849 0.0270 0.25 
extra 
fine 

2726 - 11801 0.0192 0.127 

extra 
coarse 

75 + 161 0.2030 2.58 

coarser 109 + 250 0.1934 0.90 
coarse 141 + 342 0.0697 1.47 
normal 256 + 676 0.1814 0.60 

fine 464 + 1407 0.2049 0.38 
finer 1028 + 3633 0.1954 0.26 
extra 
fine 

2726 + 11063 0.2191 0.109 

normal 
& ref.1 

732 - 2636 0.0405 3.82 

fine & 
ref. 

1436 - 5578 0.0205 3.13 

finer & 
ref. 

3510 - 15155 0.0223 1.46 

coarser 
& ref. 

286 + 880 0.0899 1.10 

normal 
& ref 

697 + 2465 0.1174 0.45 

fine & 
ref. 

1368 + 5197 0.1084 0.311 

finer & 
ref. 

3357 + 14270 0.1373 0.130 

extra 
fine & 

ref. 

9273 + 42183 0.1404 0.072 


