Linear water wave propagation around structures

Luca Martinelli, Alberto Lamberti DISTART Idraulica

Università di Bologna

HANNOVER

OUTLINE MOTIVATIONS OBJECTVES METHODS MODEL VALIDATION APPLICATION CONCLUSIONS

Outline

 Motivations: Wave Energy Converters Objectives: Mild Slope Equations Methods Equations Boundary conditions Dispersion relationship Wave direction Model validation Pure diffraction Diffraction and Refraction Natural frequencies Application Conclusions

Objective

Develop a tool for designing a port layout with energy sinks that minimise wave disturbance elsewhere. Tool characteristics should be:

 ability to predict wave height transformation within a closed basin with partially absorbing walls

ability to parametrize geometry

In this initial phase, the objective is merely to develop the tool.

OUTLINE MOTIVATIONS

OBJECTVES

METHODS

MODEL VALIDATION APPLICATION CONCLUSIONS

Methods

• Treat problem with 2D mild slope equations. Solve equations with "Comsol Multiphysics Software" using PDEs in general form.

• Treat open boundary condition problem using the "Internal generation of waves" system according to Bellotti at al. (Ceng, 2003)

• Treat other boundary conditions according to Beltrami et al. (J Wat. Port. Coastal & Ocean Eng. 2001)

APPLICATION CONCLUSIONS

Governing equations

Domain:

Ψ is potential of velocities **U**=(U,V) (i.e. **U**=∇ Ψ)

 $\Psi(x,t) = \operatorname{Re}[\psi(x)e^{i\omega t}]$

 $\nabla \cdot \left(c c_{g} \nabla \psi \right) + k^{2} c c_{g} \psi = 0$

Internal generation of waves

Add a **line** in the domain where the RHS is S: $\nabla \cdot \left(cc_{g} \nabla \psi \right) + k^{2} cc_{g} \psi = S$ Across the line, continuity is assured by: n $\Gamma_1 = n \Gamma_2$ and a dweak term S is added *a* is amplitude of generated $S = 2gc_g a\delta(x)$ waves

(Bellotti at al., Ceng 2003)

Dispersion relationship

 $\omega^2 = kg \tanh(kh)$

Algebraic equation, implicit in the unknown k (modulus, not direction!!) \rightarrow k is solved using a 5th order polynomium which is continuous and very accurate

Model validation: pure diffraction

OUTLINE MOTIVATIONS

OBJECTVES

METHODS

MODEL VALIDATION APPLICATIONS CONCLUSIONS

Boundary conditions

All boundary condition are of Noimann type and involve wave direction β

$$\Gamma \cdot n = cc_g \frac{\partial \psi}{\partial n} = icc_g k \cos \beta \frac{1-R}{1+R} \psi$$

(except for full reflection, R=1, where the equation degenerates into a 0 flux condition)

→ boundary condition depends on the solution!

The wave direction

 $\mathbf{k} = \nabla \chi = \nabla$ (-i phase(ψ)) (*)

 $\psi = A \exp(i \chi)$

 β is the direction of vector k with respect to the boundary

k is not computed correctly by eq. (*) (spatial derivative!)

$$\nabla \psi = \nabla A e^{i\chi} + i \overline{k} A e^{i\chi}$$
$$\Rightarrow \overline{k} = i \left(\frac{\nabla A}{A} - \frac{\nabla \psi}{\psi} \right)$$

COMSOL CONFERENCE 2008, L. MARTINELLI

since $\chi = \mathbf{k} \bullet \mathbf{x}$

CONFERENCE C

Model validation: refraction/diffraction

COMSOL CONFERENCE 2008, L. MARTINELLI

OUTLINE MOTIVATIONS OBJECTVES METHODS MODEL VALIDATION APPLICATION

CONCLUSIONS

Application: Casal Borsetti marina

Design: wave heigth < 0.5 m

> Daniele Polverelli Fabio Venturini Daniele Romandini Natxco Villalba

COMSOL CONFERENCE 2008, L. MARTINELLI

Ν

Max wave in Casal Borsetti marina

OUTLINE		$_{\rm Ho}$	0,5	1	1,5	2	2,5	3	3,5	4	4,5	5
MOTIVATIONS	An-	θrel										
OBJECTVES	golo											
METHODS	30	-70	Ver.	0,343	0,567							
MODEL VALIDATION	60	-40	Ver.	Ver.	Ver.	0,387						
APPLICATION	90	-10	Ver.	Ver.	Ver.	Ver.	0,344					
CONCLUSIONS	120	20	Ver.	Ver.	Ver.	Ver.	0,254	0,39				
	150	50	Ver.	Ver.	Ver.	Ver.	Ver.	Ver.	Ver.	Ver.	Ver.	0,199

Blue shaded cells: waves break at the outer port entrance (navigation not allowed)

Gray shaded cells: breakwater does not protect inner entrance: this occurs 2.17% of the year

OUTLINE MOTIVATIONS OBJECTVES METHODS MODEL VALIDATION APPLICATION CONCLUSIONS

Application: Casal Borsetti marina

OUTLINE MOTIVATIONS OBJECTVES METHODS MODEL VALIDATION APPLICATION

CONCLUSIONS

The MSE can be easily programmed in Comsol multiphysics.

Conclusions

• Some suggestions are given to walk around minor difficulties in the programming phase:

how to generate internal waves (with a weak term);

how to solve the implicit wave dispersion relationship;

• a robust way to define wave direction, necessary for the iterative procedure.

• The method is validated against several benchmarks and applied to a realistic case: the design of Casal Borsetti marina.

