

Presented at the COMSOL Conference 2008 Hannover

COMSOL Conference Hannover November, 6th, 2008

Study of the CO₂ Transfer Rate in a Reacting Flow for the Refined Sodium Bicarbonate Production Process

Christophe Wylock (F.R.S.-FNRS research fellow), Aurélie Larcy, Pierre Colinet, Thierry Cartage and Benoît Haut

Chemical Engineering Department Applied Science Faculty, Free University of Brussels

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan

ULB Introduction

- Refined sodium bicarbonate (NaHCO₃) production (Solvay) process in bubble columns (BIR columns)
- Limiting step : gas-liquid CO₂ absorption

ULB Introduction

- Main resistance : in the liquid phase, where CO₂ takes part to chemical reactions
- This work : modelling of the CO₂ transfer rate from a bubble to the liquid phase

ULB Introduction

- Main resistance : in the liquid phase, where CO₂ takes part to chemical reactions
- This work : modelling of the CO₂ transfer rate from a bubble to the liquid phase
 - \rightarrow Coupling of
 - Convective transport
 - Diffusive transport
 - Chemical reactions
- Interfacial adsorbed surfactants : change the flow field around the bubble → 2 cases investigated :
 - fully contaminated bubble (no slip)
 - clean bubble (slip)

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan

ULB Modelling

- Incompressible Navier-Stokes mode and Convection and Diffusion mode from the C.E. module
- 2-D axisymmetric geometry
- Computational domain
 - Semi-bubble located at the center of a semi-circular domain
 - Inertial reference frame located at the mass center of the

ULB Modelling

Governing equations (in vectorial dimensionless form)

Navier-Stokes and continuity

 $\begin{cases} (u \Box \nabla) u = \nabla \Box \left[-\frac{1}{P} \mathbf{I} + \frac{1}{Re} \left(\nabla u + (\nabla u)^{T} \right) \right] \\ \nabla \Box u = 0 \quad \rightarrow \text{ velocity } \quad \text{pressure} \end{cases}$

Mass transport coupled with chemical reactions

ULB Modelling

- Meshing
 - Concentric circular mapped mesh
 - Finer in the vicinity of the interface

Solver : stationnary UMFPACK

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan

1) Validation by comparison of the simulation results WITHOUT reactions with classical correlations from literature

Excellent agreement → validated

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan

- 1) Validation by comparison of the simulation results without reactions with classical correlations from literature : OK
- 2) For operating conditions of BIR columns
 - Bubble : 1 mm diameter and rising velocity of 0.2 m/s
 - \rightarrow Re = 200 and Pe = 100 000
 - Other parameter values¹:

$$\alpha = 0.003$$
 $Ha_1 = 0.19$ $Ha_2 = 902$ $\beta_b = 4.1$ $\beta_c = 0.9$ $\beta_d = 0.7$ $\chi_b = 64$ $\chi_c = 0.03$ $\chi_d = 0.025$

→ Study of the CO₂ transfer rate as a function of the Hatta1 number (dimensionless ratio of chemical reaction 1 rate on CO₂ diffusion rate)

- Simulations of the CO₂ concentration field
 - No reactions : $Ha_1=0$ (and $Ha_2=0$)

Fully contaminated bubble

Page 14

- Simulations of the CO₂ concentration field
 - Slow reaction $1 : Ha_1 = 0.1$

Fully contaminated bubble

Clean bubble

- Simulations of the CO₂ concentration field
 - Moderate reaction $1 : Ha_1 = 1$

Fully contaminated bubble

Clean bubble

0.9

0.7

0.5

0.3

0.1

- Simulations of the CO₂ concentration field
 - Fast reaction $1 : Ha_1 = 10$

Fully contaminated bubble

Clean bubble

- Simulations of the CO₂ concentration field
 - \rightarrow Increasing CO₂ depletion for increasing reaction 1 rate
- Calculation of the CO₂ transfer rate :

 \rightarrow The CO₂ consumption enhances the CO₂ transfer rate

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan

3) Comparison of the 2-D axysymmetric clean bubble case and a commonly-used 1D-approach of the chemical engineering

- Description of the Higbie approach
 - Liquid flow : mosaïc of liquid elements slipping on the bubble
 - Each element stays in contact with the bubble the same time
 - No shear stress in the liquid
 - Diffusion is normal to the interface

Comparison results

- The Higbie approach provides an excellent estimation
- Tend to slightly underestimate the chemical reactions effect when $Ha_1 > 1$

- Introduction
- Modelling
- Simulation results
 - Validation
 - For industrial operating conditions
 - Comparison with a 1-D common approach
- Conclusions and future plan

ULB Conclusion and future plans

- Development of a model of bubble-liquid CO₂ transfer coupled with chemical reactions (for 2 cases) :
 - Validation without reaction : excellent agreement
 - Estimation of the chemical enhancement on the transfer rate
 - Excellent comparison for the transfer rate estimation between 2-D clean bubble case and 1-D Higbie approach

Future plans

- Extension to larger bubbles (2 6 mm)
 - $-400 \leq Re \leq 1200$
 - Spherical bubble \rightarrow ellipsoidal-shape bubble
 - Shape coming from experimental observation
- Comparison with spherical shape → quantification of the shape effect

Thanks for your attention

