Highly Nonlinear Electrokinetic Simulations Using a Weak Form

Gaurav Soni, Todd Squires, Carl Meinhart University Of California Santa Barbara, USA

	$\underline{\qquad} E_{\theta} \underline{\qquad}$	
+		

Effective Boundary PDE

• Conservation of double layer surface charge

$$\frac{\partial q}{\partial t} = \frac{\partial \phi}{\partial y} + \frac{\partial}{\partial x} \left(Du \frac{\partial \phi}{\partial x} \right)$$

Non-linear Capacitance $q = -2\sinh(\zeta/2)$ $Du = 4\varepsilon(1+m)\sinh^2(\zeta/4)$

Transformation for Stability

• Double layer charge grows exponentially and causes numerical errors.

$$\frac{\partial q}{\partial t} = \frac{\partial \phi}{\partial y} + \frac{\partial}{\partial x} \left(Du \frac{\partial \phi}{\partial x} \right)$$

• To make the solution stable, a *q* variable transformation is required.

$$q = -2\sinh(\zeta/2) \Rightarrow \frac{dq}{dt} = -\cosh\left(\frac{\zeta}{2}\right)\frac{dq}{dt}$$

$$\phi = -\zeta$$
 \downarrow

• Stability is improved by creating diffusion without losing accuracy.

 $\frac{\partial \zeta}{\partial t} = -\frac{1}{\cosh(\zeta/2)} \left[\frac{\partial \phi}{\partial y} - \frac{\partial}{\partial x} \left(Du \frac{\partial \zeta}{\partial x} \right) \right]$

Nonlinear Electrokinetic Model

$$\begin{array}{c}
 & L & & \\
 & \hat{n} \cdot \nabla \phi = 0, \ u = 0 \\
\end{array}$$

$$\begin{array}{c}
 & \hat{n} \cdot \nabla \phi = 0, \ u = 0 \\
\end{array}$$

$$\begin{array}{c}
 & \hat{n} \cdot \nabla \phi = 0, \ u = 0 \\
\end{array}$$

$$\begin{array}{c}
 & \eta \nabla^2 \phi = 0 \\
 & \eta \nabla^2 u - \nabla p = 0 \\
\nabla \cdot u = 0 \\
\end{array}$$

$$\begin{array}{c}
 & u = 0 \\
\phi = -\alpha \frac{L}{2a} f(t) \\
\end{array}$$

$$\begin{array}{c}
 & u = 0 \\
\phi = -\alpha \frac{L}{2a} f(t) \\
\end{array}$$

$$\begin{array}{c}
 & u = 0 \\
\phi = -\alpha \frac{L}{2a} f(t) \\
\end{array}$$

$$\begin{array}{c}
 & dellow \\
\phi = -\zeta & b.c. \\
\hline
& dellow \\
\end{array}$$

$$\begin{array}{c}
 & \frac{\partial q}{\partial t} = \frac{\partial \phi}{\partial y} + \frac{\partial}{\partial x} \left(Du \frac{\partial \phi}{\partial x} \right) \\
\end{array}$$
Boundary PDE
$$\begin{array}{c}
 & q = -2 \sinh(\zeta/2) \\
& Du = 4\varepsilon(1+m) \sinh^2(\zeta/4) \\ & \varepsilon = \lambda_p/a
\end{array}$$

Non-Dimensional Simulation Parameters

Voltage Scaling

$$\alpha = \frac{\text{zeta magnitude}}{\text{thermal voltage}} = \frac{ze}{kT} \frac{a}{L} V_{ext}$$

Length scale ratio

$$\varepsilon = \frac{\text{debye length}}{\text{electrode length}} = \frac{\lambda_D}{a}$$

Weak Form in COMSOL

- Weak form
 - An integral form equivalent to the original PDE.
 - Derived by multiplying the PDE with a test function and then integrating over the domain.
- Weak form advantages
 - Create custom equations on with dimension
 - Implement PDEs on boundaries
 - Mixed time and space derivative

Weak Form: Example

Consider Diffusion Equation

$$\frac{\partial C}{\partial t} = \nabla \cdot \left(D \nabla C \right) + R$$

Weak Form: multiply with test function v and integrate over domain

$$\int_{\Omega} v \frac{\partial C}{\partial t} d\Omega = \int_{\Omega} v \nabla \cdot (D \nabla C) d\Omega + \int_{\Omega} v R d\Omega$$

Simplify
$$\int_{\Omega} v \frac{\partial C}{\partial t} d\Omega = \int_{\Omega} \nabla \cdot (v D \nabla C) d\Omega - \int_{\Omega} D \nabla v \cdot \nabla C d\Omega + \int_{\Omega} v R d\Omega$$

Apply Green's Theorem

$$\int_{\Omega} v \frac{\partial C}{\partial t} d\Omega = \int_{\partial \Omega} v \hat{n} \cdot (D\nabla C) d\partial \Omega - \int_{\Omega} D\nabla v \cdot \nabla C d\Omega + \int_{\Omega} v R d\Omega$$

Time dependent term Boundary fluxes

Diffusive term Source term

Weak Form Contributions

Time dependent or *dweak* terms:

$$\int_{\Omega} v \frac{\partial C}{\partial t} d\Omega$$

weak terms for
$$\Omega = \int_{\Omega} D \nabla v \cdot \nabla C d\Omega + \int_{\Omega} v R d\Omega$$

weak terms for $\partial \Omega$

$$\int_{\partial\Omega} v\hat{n} \cdot (D\nabla C) d\Omega$$

Double Layer Boundary PDE

 $\partial \Omega$ — Ω , Boundary $\partial \Omega$, Points

Boundary PDE $\frac{\partial \zeta}{\partial t} = -\frac{1}{\cosh(\zeta/2)} \left[\frac{\partial \phi}{\partial y} - \frac{\partial}{\partial x} \left(Du \frac{\partial \zeta}{\partial x} \right) \right]$

Weak Form $\int_{\Omega} v \frac{\partial \zeta}{\partial t} d\Omega = -\int_{\Omega} \frac{v}{\cosh(\zeta/2)} \frac{\partial \phi}{\partial y} d\Omega + \int_{\Omega} \frac{v}{\cosh(\zeta/2)} \frac{\partial}{\partial x} \left(Du \frac{\partial \zeta}{\partial x} \right) d\Omega$

Simplify

$$K = \int_{\partial\Omega} \left(v \frac{Du}{\cosh(\zeta/2)} \frac{d\zeta}{dx} \right) \cdot \hat{n} d\partial\Omega - \int_{\Omega} \frac{Du}{\cosh(\zeta/2)} \left[\frac{\partial\zeta}{\partial x} \frac{\partial v}{\partial x} - \frac{v}{2} \tanh(\zeta/2) \left(\frac{\partial\zeta}{\partial x} \right)^{2} \right] d\Omega$$

$$\partial\Omega \text{ Contribution} \qquad \Omega \text{ Contribution}$$

Weak Form Contributions

Time dependent or *dweak* terms:

$$\int_{\Omega} v \frac{\partial \zeta}{\partial t} d\Omega$$

weak terms for boundary Ω

Effect of Surface Conduction

Normalized Velocity: Nonlinear Effects

As double layer gets thicker, the normalized velocity decreases due to higher surface conduction.

Normalized Velocity: Nonlinear Effects

As zeta potential increases, the normalized velocity decreases due to higher surface conduction.

Conclusions

- An effective boundary PDE was used for simulation electroosmosis.
- Nonlinear effects such as exponential capacitance and surface conduction were simulated.
- The boundary PDE was made stable by variable transformations.
- Results for high zeta potentials (~30x thermal voltage) were obtained.
- The dimensionless velocity decreases with increasing zeta potentials and increasing double layer thickness, because surface conduction effects become prominent for high zeta potentials and thicker double layers.