Thermal-Mechanical Behavior of Oceanic Transform Faults

COMSOL Conference - Boston, Massachusetts October 2008

Emily C. Roland - MIT/WHOI Joint Program

Mark D. Behn - Woods Hole Oceanographic Inst.

Greg Hirth - Brown University

Mid-Ocean Ridge Transform Faults

Transform Faults Play Many Roles:

- Accommodate deformation on mid-ocean ridges worldwide
- Influence mantle flow
- Provide mechanism for fluid circulation:
 - Alteration
 - Hydration

Mid-Ocean Ridge Transform Faults

Transform Faults Play Many Roles:

- Accommodate deformation on mid-ocean ridges worldwide
- Influence mantle flow
- Provide mechanism for fluid circulation:
 - Alteration
 - Hydration

Need for improved fault models:

Simple half-space models: correlation between seismicity and temperature.

Neglect fundamental physical processes.

Abercrombie and Ekstrom, 2001

Our Study:

- Utilize finite element numerical models to characterize the temperature structure and mantle flow field of the transform environment.
 - non-Newtonian viscous flow & Brittle failure in shallow lithosphere
 - Thermal and Rheological feedbacks that result from the presence of fluids

Modeling Oceanic Transform Faults:

COMSOL 3.2 Finite Element Software Package

3-D, steady-state incompressible mantle flow thermal structure

Boundaries

Surface: Flow driven by imposed velocity, u_o: half slip rate

Temperature: $T_s = 0^{\circ} C$

Bottom: Stress Free (allowing mantle upwelling)

Temperature: T_m= 1300° C

Sides: Stress Free - open to convective flux

Rheology Model

Non-Newtonian viscous mantle Rheology: 1-n /

 $\eta_{disl} = B \dot{\varepsilon}^{\frac{1-n}{n}} \exp\left(\frac{E}{nRT}\right)$

Visco-plastic Approximation for brittle weakening:

maximum shear stress in the lithosphere

$$\sigma_{\text{max}} = C_0 + \mu (1 - \lambda) \rho gz$$
 $\eta_{brittle} = \frac{\sigma_{\text{max}}}{2\dot{\varepsilon}}$

Chen and Morgan, 1990

Composite Rheology Law

$$\eta_{eff} = \left(\frac{1}{\eta_{disl}} + \frac{1}{\eta_{brittle}} + \frac{1}{\eta_{max}}\right)^{-1}$$

Weakening due to alteration:

 $\sigma_{\max} = C_0 + \mu(1 - \lambda)\rho gz$

Serpentinization of peridotites:

- lizardite and chrysotile serpentines have low coefficients of friction

 $-\mu = 0.1-0.45$

Escartin et al., 2001

Hydrothermal Circulation:

- Hydrothermal heat transport as enhanced thermal conductivity
- Nusselt Number (Nu): ratio of hydrothermal heat transport within a permeable layer to heat transport by conduction alone (Phipps Morgan and Chen, 1993)

$$k_{eff} = k_0 \times \left[1 + (Nu - 1) \times \exp(\frac{Z}{Z_{ref}}) \times erf(z - z_{brittle})\right]$$

Model Results

Temperature Solution:

 $u_0 = 1.5 \text{ cm/yr}$

hydrothermal cooling: *Nu* = 8

Lower Effective Viscosity Increased Mantle Upwelling

Effect of **Hydrothermal Cooling** and **Spreading**Rate-

0 4 8 12 16

Zone of Brittle Failure:

Nusselt Number of Hydrothermal Cooling

Potential for incorporating water into the mantle

> brittle failure zone is depressed below crust (6km)

Comparison to Half-space model

600° C isotherm from simple half-space cooling model -

correlated with maximum depth of transform earthquakes

Abercrombie and Ekstrom, 2001

Conclusions

- Oceanic transform thermal models with brittle weakening show warm faults
 - Reduced effective viscosity leads to enhanced mantle upwelling
 - More consistent with seismologic observations, mechanical behavior
- Model results show secondary feedbacks influence thermal solution:
 - Altered minerals formed in brittle fault zone fail at lower shear stress
 - Increased heat transfer from hydrothermal circulation leads to cooler faults
- Implications for:
 - Seismologic and mechanical nature of oceanic lithosphere
 - mantle hydration: water budget estimates
 - Arc Volcanism where fracture zones are subducted

Heat Equation

$$\nabla \cdot (-k\nabla T) = Q - \rho C_p u \cdot \nabla T$$

steady state conduction, convection,

Navier Stokes -

$$\nabla \cdot u = 0$$

Conservation of mass

$$\rho(u\cdot\nabla)u=\nabla\cdot\left[-pI+\eta\left(\nabla u+\left(\nabla u\right)^{T}\right)\right]+F$$

Convective acceleration, Pressure gradient, diffusion of momentum, body forces

Extent of brittle failure formation of hydrated phases:

Modeled transform fault properties - Observations

Evolution of the Transform Thermal Models

- Traditional 3D transform models are too cold to match a number of observations:
 - Maximum depth of transform earthquakes
 - Mechanical behavior of faults relative to surrounding crust
 - Transform Morphology
- Improved Rheological model to more realistically represent thermal structure
 - Brittle Rheology: weakens crust at shallow depths leading to enhanced mantle upwelling and warmer temperatures

Phase Stability

Iherzolite composition at H2O-saturated conditions, after *Schmidt&Poli 1998*

tholeiitic basalt composition

Transform Thermal Models

Previous models produced temperature structure too cold to match observations: Seismicity, Localized Deformation

More realistic Rheology:

- Shallow brittle mechanisms weaken transform
- Increase mantle upwelling leads to warmer temperatures

Behn et al. 2007 - temperature dependent model results results of model with brittle weakening of the lithosphere