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Abstract:  Convective transport of 

macromolecules or micro and nano-particles in 

microsystems is usually predicted by solving the 

Navier-Stokes equations for the carrier fluid and 

a concentration equation for the diffusing 

species. In the case of isolated particles—or 

molecules—or complicated geometries with 

extremely small apertures or microporous 

material, the concentration equation may be 

replaced by a Monte-Carlo model.  In the limit of 

a large number of particles, we show that the two 

approaches lead to similar results.  
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1. Introduction 
 

Many physical phenomena are 

mathematically governed by partial differential 

equations (PDE). In the case of microsystems, 

even with the scaling down linked to 

miniaturization, it is usual to use continuum 

modeling—like finite element method—to 

simulate the phenomena which are put to work, 

the limit being the transition to nanoscales. 

Nevertheless, two problems arise at very small 

scales:  first, even if the liquid phase—carrier 

fluid—can be considered as a continuum, the 

transported species, targets, macromolecules, 

tracers or markers, may be in discrete amounts. 

Second, the geometrical scales can range in a 

large spectrum—with locally very small scales—

making difficult the use of the continuum 

approach. Interfacing a usual PDE approach for 

the carrier phase and a discrete formulation for 

the transported particles may be the answer in 

such cases; besides, at larger scales and 

concentrations, it reveals the physical behavior 

often hidden in the continuum approach. 

In this paper, we show the consistency of the 

two methods and illustrate some advantages of 

this interfacing in microfluidics. 

 

2. Interfacing COMSOL and discrete 

Monte-Carlo model 
 

2.1 Diffusion from a point source  

 

Axi-symmetric diffusion of species from a 

point source is governed by the diffusion 

equation 
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Analytically, when the boundary conditions are 

not complicated, the solution can be written in 

term of Bessel functions [1]. However, a F.E.M. 

numerical scheme is often more convenient and 

versatile. Another way of apprehending the 

physics of the diffusion is to mimic the random 

walk of the diffusing species. This approach is 

inspired by the Langevin equation [2]. The 

random term is modeled as if the particles were 

moving by successive linear segments, and 

turning suddenly at a random angle. It is not 

required that the length of the linear segments be 

as small as the mean free path. A larger length 

(or time step) can be chosen under the condition 

that it is small compared to the characteristic 

dimensions of the problem. For simplicity we 

present here a 2D situation; the random walk is 

then described by 
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The remaining difficulty is to describe precisely 

the computational domain boundaries and to 

specify conditions for the particles impacting the 

boundaries. This part can sometimes be 

complicated. In figure 1, we show the 

consistency of free 2D diffusion from a point 

source between Monte-Carlo and COMSOL 

models. 

Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover
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Figure 1. Diffusion of species from a point source: (a) 

random walks of particles, the green circle 

corresponds to the distance tD4l = , (b) end point 

at t=0.75 s (D= 10-9 m2/s), (c) comparison with 

COMSOL for the integral of the concentration in 

function of the distance from the origin. 
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Figure 2. Diffusion in an extra cellular network of a 

tumor; (a) in vivo fluorescent image of diffusing 

drugs, (b) schematic of the network obtained with the 

Surface Evolver numerical software, (c) simulation of 

the diffusion  with a Monte-Carlo model, (d) up-take 

calculation of diffusive species by the different cells 

based on a probabilistic model. 

 

Such an approach has been used to predict 

the equivalent diffusion coefficient in porous 

networks of cells (fig.2) [3], and the subsequent 

cellular up-take by taking into account 

probabilities of penetration into the cells. 

 

2.2 Convective transport  

 

2.1. Introduction 

 

A similar approach can be done for convective 

transport. This time, the random walk superposes 

to the convective transport, in agreement with 

Langevin’s equation (drag term) [4,5]. First, the 

velocity field of the carrier fluid is computed by 

solving the Navier-Stokes equation (or the 

Stokes equation if the Reynolds number is suffi-  

COMSOL 
Carrier fluid velocity field

Tabulation 
Nodes and velocities

Particle current location
time t

Eq. (3) Particle location
time t+dt

interpolation

t+dt � t

 
Figure 3. Principle of the coupling algorithm. 

 

ciently small). The fluid velocities at the nodes 

of the FEM model are then tabulated. Finally the 

Monte-Carlo model makes use of the 

interpolated velocities to calculate the random 

walk in the moving fluid 
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The main difficulties at this stage are the 

interpolation algorithm for the velocities [Vx, Vy] 

and the proper geometrical boundary conditions 

at a solid wall. On one hand, it has been chosen 

to select the nearest neighboring nodes and 

calculate an averaged velocity. On the other 

hand, the boundary conditions are, for the 

moment, either an elastic rebound or a complete 

adsorption. Rigorously, when a nano-particle or 

a macro-molecule approaches a solid wall, a 

calculation of the molecular interactions should 

be done. But this solution is not tractable and 

simplified boundary conditions must be used (in 

the same manner than for mesoscale methods). 

 

2.2. Straight micro-channel      

    

The method has been first applied to 

convective diffusion of species in a straight 

micro-channel. Figure 4 shows the random walk 

of micro-particles in the channel (width 100 µm, 

average velocity 300 µm/s, and diffusion 

constant of 10
3
 µ

2
/s). Figure 5 compares the 

convection-diffusion solution obtained by using 

COMSOL or the coupling COMSOL-Monte-

Carlo (for 1000 particles).    



Figure 4. Convective diffusion of single micro-

particles obtained by the coupled approach (not to 

scale). 

 
Figure 5. Concentration in a bolus moving through a 

micro-channel: top, COMSOL calculation; bottom, 

coupled COMSOL-Monte-Carlo calculation (1000 

micro-particles). 

 

2.3. Recirculation micro-chamber 

 

Recirculation micro-chambers are used to 

trap biological objects like cells, or biochemical 

species [6-8]. It is of great importance to know if 

these objects are effectively trapped or can 

escape in the feeding channel (fig. 6). 

 

Figure 7 shows the agreement between the 

COMSOL-multiphysics model and the 

COMSOL-Monte-Carlo approach.  

 

The coupled COMSOL-Monte-Carlo gives 

very useful insight concerning the motion of the 

particles: the efficiency of trapping depends on 

the micro-chamber shape and dimensions, and on 

the diffusion constant of the particles (fig. 8). 
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Figure 6. Schematic of a recirculation chamber [8]: 

For the right range of Reynolds numbers the particles 

are trapped inside the diamond shaped cavity.   
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Figure 7. Left: COMSOL multiphysics model of a 

bolus of concentration in a recirculating chamber; 

right, same problem using the coupled COMSOL-

Monte-Carlo approach. 
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Figure 8. Random walk of particles trapped in a 

recirculation micro-chamber: (a) if the diffusion 

constant is small enough (D=10-10 m2/s) the particles 

are trapped; (b) they escape progressively when the 

diffusion coefficient is sufficiently large (D=10-9 

m2/s).    

 

2.4. Micro-pillars 

 

In microsystems for Biotechnology such as 

proteomic reactors [9] and liquid-liquid 

extractors (LLE) [10,11], micro-pillars are often 

used: in proteomic reactor, the pillars are coated 

with ligands (enzymes) and the bio-reaction is 

realized upon contact of the proteins with the 

pillar surfaces; in LLEs, the pillars are used to 

stabilize interfaces between the liquids which are 

permeable to the targeted species. In both cases, 

the trajectories of proteins or biochemical 

species in the vicinity of pillars have a 

fundamental importance. Figure 9 shows the 

comparison between a concentration calculation 

with COMSOL and a COMSOL-Monte-Carlo 

method for a bolus of concentration entering a 

micro-channel obstructed by a pillar.  

 

(a)

(b)
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Figure 9. (a) concentration contour plot (COMSOL 

multiphysics); (b) plot of randomly selected 

trajectories; (c) concentration contour plots obtained 

by the coupled method with 200 molecules. 

 

 

2.5. Diffusive transport through microscopic 

holes 

 

In modern biosystems, it is frequent to use 

micro or even nano-holes forming a nanoporous 

membrane to filter out molecules [12,13]. 

Depending on their size, some molecules can 

percolate through the hole, larger ones do not. 

Micro-holes dimensions are meso-scale, at the 

border between microscopic and nanoscopic 

scales.  Two types of problem arise with the 

continuum approach: first, difficulties with the 

meshing of very slender domains and the 

numerical stability conditions associated; 

second, the continuum hypothesis starts to be in 

difficulty for nanopores. The coupled approach 

appears to be a possible solution, as shown in 

figure 10.   
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Figure 10. (a) Diffusive-convective transport of 

species through a microscopic pore (2 µm). (a) The 

continuum approach starts to show its limits  with 

‘instabilities’ due to insufficient meshing (yellow 

arrows); (b) the same calculation with the coupled 

approach (100 molecules only); (c) end points of 

molecules trajectories; (d) trajectories deduced from 

convective transport and random walk. 

 

 

2.6. 3D approach 

 

The numerical scheme proposed here can be 

applied to 3D geometries as well. The numerical 

scheme of equation (3) should be replaced by 
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where α and β are the directing angles.  

 

Figure 11 shows the dispersion of a tracer in 3D 

straight and turning micro-channels. 

 

7. Conclusions 
 

In this work, we have demonstrated the 

consistency—for convective transport modeling 

of micro and nano-particles—of the continuum 

approach using a multiphysics PDE model and 

the coupled approach using a continuum PDE 

model for the carrier flow velocity field, 

interfaced with a Monte-Carlo model for the 

convective diffusion of micro and nano-particles.  

 
 

Figure 11. 3D dispersion of a tracer: (left) straight 

channel; (right) turning channel. 

 

Rigorously the PDE approach based on the 

continuum assumption cannot be applied when 

the molecules of the transported species are in 

too small numbers—at the most, it defines only a 

probability of presence— or when the nanoscale 

is reached [4]. Besides, the PDE approach runs 

into difficulties for complicated geometries with 

very different scales. Interfacing Monte-Carlo 

diffusion with a PDE solution for the velocity 

field brings a new light for convective diffusion 

of solitary particles in the complex geometries of 

microsystems for biotechnology, especially 

when the carrier fluid seeps through small 

apertures, very narrow channels, restricted 

micro-chambers and micro-porous media. The 

remaining difficulty however is the same than 

that found in mesoscale computational 

approaches, i.e. to define and introduce the 

relevant boundary conditions at the wall. 
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