

Design of a Self-Recharging Untethered Mobile Inspection Tool inside a Pipeline

Wadie R. Chalgham

University of Louisiana at Lafayette

10/06/2016

- Statement of Problem: Why Pipeline Inspection?
- \circ Objectives and scope
- o Model Design
- Simulation Results
- Sensitivity Analysis
- \circ Conclusions

• Statement of Problem: Why Pipeline Inspection?

- Objectives and scope
- Model Design
- Simulation Results
- Sensitivity Analysis
- \circ Conclusions

Why Pipeline Inspection?

- High environmental, financial and human risks due to leaks
- Every day leaking pipes lose more than 7 billion gallons of clean drinking water
 - \rightarrow \$11 billion in loss per year from water leaks only.
- In 2013 alone, 623 gas and hazardous liquid pipeline incidents

 \rightarrow 10 fatalities, 47 injuries and \$336 million in property damage.

Why Pipeline Inspection?

72-inch Pipe failure causing more than 100 homes to flood on 2009, Baltimore, MD

Why Pipeline Inspection?

66-inch Pipe water main failure on 2008, Interstate 25, Denver, Colorado

- Statement of Problem: Why Pipeline Inspection?
- **Objectives and scope**
- o Model Design
- **o** Simulation Results
- Sensitivity Analysis
- \circ Conclusions

Objectives and Scope

→ Innovative Design of a Self-Recharging Mobile Inspection Tool

Numerical study Goal:

Energy gained by the rotation of the blades inside the ball

- Statement of Problem: Why Pipeline Inspection?
- \circ Objectives and scope
- Model Design
- Simulation Results
- Sensitivity Analysis
- \circ Conclusions

Model Design

Model Design

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- Numerical Model
- **o** Simulation Results
- Sensitivity Analysis on Leak Noise Propagation
- \circ Conclusions
- Future Work

Velocity Results

Velocity Results

Slide 14

Pressure Results

Slide 15

Slide 16

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- Numerical Model
- Simulation Results
- Sensitivity Analysis
- \circ Conclusions

Sensitivity Analysis

Four Openings Locations

Location of Vertical Sections

Velocity Results with One Opening

Opening A

Velocity Results with Two Openings

Openings A and B

Velocity Results with Two Openings

Openings A and D

Velocity Results with Two Openings

Openings A and C

Velocity Results with 4 Openings

Openings A, B, C and D

- Statement of Problem: Why Pipeline Inspection?
- Objectives and scope
- Numerical Model
- Simulation Results
- Sensitivity Analysis
- Conclusions

Conclusions

→ Optimal Design consists of 2 Openings: A and D

- This design provides maximal rotational velocity for the blades
- The energy gained from the blades rotation will recharge the battery embedded inside the spherical ball

Thank you Any Questions?

Design of a Self-Recharging Untethered Mobile Inspection Tool inside a Pipeline Wadie R. Chalgham