Design of a Self-Recharging Unterhered Mobile Inspection Tool inside a Pipeline W. R. Chalgham¹, and A. C. Seibi¹

1. University of Louisiana at Lafayette, Petroleum Engineering Department, Lafayette, LA, USA

Scope:

- Design a fully autonomous inspection tool
- Self-recharging mobile ball
- Optimize the design of the ball for maximal energy gain

Sensitivity Analysis:

- Vary the openings number and location
- Compare the energy gain, denoted G, generated by different ball designs

Model Design:

G = 0.45

G= 0.016

G = 0.1

Figure 3. Fluid Velocity Profile inside the Ball with different designs and their respective gain

Figure 1. Design of the Ball Outer Shell

Conclusions:

- The maximal velocity for the blades rotation is achieved by Design 2 (G = 0.5)
- The kinetic energy generated from the rotation of the blades by the fluid flow inside the ball will recharge the battery

Figure 2. Design of the Rotating Blades

References:

Wadie R. Chalgham, Abdennour C. Seibi and Fathi Boukadi, Simulation of Leak Noise Propagation and Using COMSOL Multiphysics, ASME Detection Proceedings of the International Mechanical Engineering Congress & Exposition, Phoenix, Arizona, USA (2016) Wadie R. Chalgham, Abdennour C. Seibi and Matthew 2. Lomas, Leak Detection and Self-Healing Pipelines Using Twin Balls Technology, SPE Annual Technical Conference and Exhibition, Dubai, UAE (2016)

Excerpt from the Proceedings of the 2016 COMSOL Conference in Boston