Uniform Reaction Rates and Optimal Porosity Design for Hydrogen Fuel Cells

Jamal Hussain Al-Smail

Department of Mathematics and Statistics

King Fahd University of Petroleum and Minerals (KFUPM)

October 6, 2016

COMSOL

2016 BOSTON

1. Introduction

Consider the 2d cross-section of hydrogen fuel cell along the gas channels

Chemical reactions and Electricity production

Anode: $2H_2 \longrightarrow 4H^+ + 4e^-$

Cathode: $4H^+ + 4e^- + O_2 \longrightarrow 2H_2O + Heat$

The electrons travel from the anode to the cathode through an external circuit generating electrical power.

2. Literature Review

A gentle walk through literature review for fuel cells optimization:

- Kermani, et all: 2004, Novruzi, et all: Feb, 2004: reaction rate is not uniform on CL
- Novruzi, et all: Jul, 2004: water accumulation occurs where reaction is low
- Secanel, et all: 2007: maximizing the current density on the cathode CL by optimizing the platinum loading and gas diffusion layer porosity
- Secanel, et all: 2007-2010: optimizing the cathode and anode assembly to maximize the current density
- Mawardi, et all: 2005: optimizing the operating conditions to maximize the current density

- Song: 2004, et all: optimizing the cathode CL thickness to maximize the current density
- Grujicic: 2004, et all:

optimizing the cathode dimensions and inlet pressure to maximize the current density

• Kumar: 2003, et all:

testing rectangular, triangular and hemispherical cathode air channels to maximize the current density

- Jamekhorshid: 2011, et all: the importance of uniform current density
- Santis: 2006, et all: optimizing the catalyst loading to have the current density even on the cathode CL

2.1. Experimental Findings:

The current density or the reaction rate is not uniform on the cathode catalyst, which results in the following problems

- drying out of the membrane in regions with hight reaction rates
- water accumulation in regions with low water transport
- non-optimum usage of the cathode catalyst

3. Optimal Porosity Design of the GDL

Objective: to find an optimal porosity function $0.4 \le \varepsilon(x) \le 0.74$ that minimizes the efficiency cost functional

$$E(\varepsilon) := \int_M \left(\hat{c}(\varepsilon) - \overline{\hat{c}(\varepsilon)} \right)^2 dx, \tag{1}$$

subject to the state equations describing the fluid dynamics in the GDL. Here, a and b are given nonnegative parameters. Take

$$\varepsilon(x) = \sum_{i=1}^{N} \varepsilon_i f_i(x), \quad 0.4 \le \varepsilon_i \le 0.8$$

3.1. Mathematical Modeling

Assumptions: steady state, isothermal, single gas phase

Let \hat{c}_o (or simply \hat{c}), \hat{c}_n , \hat{c}_w denote the mass fractions of oxygen, nitrogen and water vapor, and $\hat{\mathbf{u}}_g$, \hat{p}_g , ρ_g denote the velocity, the pressure and the density of the mixture.

3.1.1. In the GDL:

Using the method of volume averaging, the state of the system in G is modeled by

• Conservation of total mass

$$\nabla \cdot (\rho_q \hat{\mathbf{u}}_q) = 0, \tag{2}$$

where $\hat{\mathbf{u}}_g$ is the superficial or extrinsic velocity.

• Conservation of momentum (Darcy equation)

$$\hat{\mathbf{u}}_g = -k(\varepsilon)\nabla \hat{p}_g,\tag{3}$$

where \hat{p}_g is the intrinsic pressure of the mixture, and $K(\varepsilon)$ is the permeability $K(\varepsilon)$ of the *GDL* divided by the dynamic viscosity μ of the mixture. Hence,

$$-\nabla \cdot (\rho_g k(\varepsilon) \nabla \hat{p}_g) = 0. \tag{4}$$

1	Gos Diffe	handan M Mileti Layar Duj	~
1	ŶŶ	J. J.	š _

Introduction			
Literature Review			
Oŗ	otimal Por	osity	
Nι	ımerical R	esults	
	Title	Page	
	44		
	••		
	•		
	Page	7 of 20	
	Go	Back	
	5 4 6		
	Full Screen		
	Close		
	Q	uit	

• Mass conservation of oxygen and nitrogen gives

 $\nabla \cdot N_o = \nabla \cdot \left(-D_o(\varepsilon)\rho_g \nabla \hat{c}_o + \rho_g \hat{c}_o \hat{\mathbf{u}}_g \right) = 0,$ $\nabla \cdot N_n = \nabla \cdot \left(-D_n(\varepsilon)\rho_g \nabla \hat{c}_n + \rho_g \hat{c}_n \hat{\mathbf{u}}_g \right) = 0,$

where \hat{c}_o and \hat{c}_n are the extrinsic mass fractions of oxygen and nitrogen, and $D(\varepsilon)$ is the effective diffusivity, which is a function of ε .

Previous Findings: the gas density ρ_g and the nitrogen mass fraction \hat{c}_n can be assumed constant. This simplifies calculations as well.

Te (oder konstant) San Diffusion Layer (SSs)	
Ľ	33 99

3.2. GDL Mathematical Model

The physics in the GDL is the described by then "reduced" Darry low

$$-\nabla \cdot (k(\varepsilon)\nabla p_g) = 0$$

and the advection-diffusion equation for oxygen

$$\nabla \cdot (-D(\varepsilon)\nabla c + c\mathbf{u}) = 0,$$

where

$$\mathbf{u} = -k(\varepsilon)\nabla p_g$$

3.2.1. Boundary Conditions:

• Let's assume that

$$p_g = p_{\Sigma}$$
 and $c = c_{\Sigma}$

are both given on Σ .

• On the walls of the GDL,

$$u_1 = 0$$
 and $N_o \cdot \nu = 0$.

Since $u_1 = -k(\varepsilon)\partial_1 p_g$,

$k(\varepsilon)\partial_1 p_g$	= 0	on	Γ_w
--------------------------------	-----	----	------------

3.2.2. Catalytic Reaction:

 \bullet On the catalyst layer M, we have the Reaction Boundary Conditions:

$$\rho_g u_2 = N_o \cdot \nu + N_w \cdot \nu$$
$$\frac{1}{M_o} N_o \cdot \nu = \frac{-1}{2M_w} N_w \cdot \nu$$
$$2H^+ + \frac{1}{2}O_2 + 2e^- \rightarrow H_2O + \text{ Heat}$$

Also, the current density

$$i(x) = 4F \times \left(\frac{1}{M_o}N_o \cdot \nu\right)$$

and from Butler-Volmer equation

$$i(x) = \frac{2i_o c}{c_o^{ref}} \sinh\left(\frac{\alpha_c F}{RT}\eta\right)$$

Hence

$$N_o \cdot \nu = H_m c,$$

and

$$u_2 = -K(\varepsilon)\partial_2 p_g = -\beta_m c$$

Title Page		
44	••	
•	Þ	
Page 10 of 20		
Go Back		
Full Screen		
Close		
Quit		

3.3. Weak Formulation

Let q be a test function such that q=0 on $\Sigma.$ Then, the "reduced" Darcy is written as

$$0 = \int_{G} k(\varepsilon) \nabla p_{g} \cdot \nabla q - \int_{\partial g} (k(\varepsilon) \partial \nu p_{g}) q$$
$$= \int_{G} k(\varepsilon) \nabla p_{g} \cdot \nabla q - \int_{M} (\beta_{m} c) q$$

Find $p \in H^1_{\Sigma}(G)$ such that

$$\int_G k(\varepsilon) \nabla p \cdot \nabla q - \int_M (\beta_m c) q = 0, \text{for all } q \in H^1_\Sigma(G)$$

Similarly, a weak form for the advection-diffusion equation reads: Find $c \in H^1_{\Sigma}(G)$ such that

$$\int_{G} [D(\varepsilon)\nabla \hat{c} - K(\varepsilon)\nabla p_g \cdot \hat{c}] \cdot \nabla \varphi + \int_{M} H_m \hat{c}\varphi = 0,$$

for all $\varphi \in H^1_{\Sigma}(G)$.

Introduction Literature Review Optimal Porosity . . . Numerical Results Title Page 44 Page 11 of 20 Go Back Full Screen Close Quit

3.4. Porosity Optimization

Recall that

$$E(\varepsilon) := \int_M \left(c(\varepsilon) - \overline{c(\varepsilon)} \right)^2 dx,$$

and the optimal porosity

$$\boldsymbol{\varepsilon}^* = (\varepsilon_1^*, \varepsilon_2^*, ..., \varepsilon_N^*)$$

is found by the Gradient Descent Method

$$\varepsilon_i^{n+1} = \varepsilon_i^n - \partial_{\varepsilon_i} E(\varepsilon^n),$$

where $\partial_i E(\varepsilon^n)$ requires $\partial_{\varepsilon_i} c$ for all $i = 1, 2, \dots, N$.

	ud Gas Diffusion Layer vo (GBs)			
	ÊÊ	3 3		
Introduction				
Lit	erature R	eview		
Оŗ	otimal Por	osity		
Νı	ımerical R	esults		
	Title	Page		
	44	b b		
	•			
	•			
	◀ Page 1	▶ 2 of 20		
	◀ Page 1 Go	▶ 2 of 20 Back		
	Page 1 Go	▶ 2 of 20 Back		
	Page 1 Go ↓ Full 5	▶ 2 of 20 Back Screen		
	 Page 1 Go Full 5 	2 of 20 Back		
	 Page 1 Go Full ≤ Cl 			
	 Page 1 Go Full 5 Cl Q 			
	 Page 1 Go a Full 5 CI Q 	2 of 20 Back Gereen ose uit		

But $\partial_{\varepsilon_i} c =: c'$ satisfies

$$\begin{split} &\int_{G} k' \nabla p \cdot \nabla q + \int_{G} [D' \nabla c - k' \nabla p \cdot \nabla c] \cdot \nabla \varphi \\ &+ \int_{G} k(\varepsilon) \nabla p' \cdot \nabla q - \int_{M} (\beta_{m} c') q \\ &+ \int_{G} [D(\varepsilon) \nabla c' - k(\varepsilon) \nabla p' c - k(\varepsilon) \nabla p \cdot c'] \cdot \nabla \varphi \\ &+ \int_{M} H_{m} c' \varphi = 0, \end{split}$$

for all $\varphi, q \in H^1_{\Sigma}(G)$.

<u>Remark:</u> It is computationally very expensive to solve this system "N" times for each iteration.

3.5. Adjoint System

Now we choose particular $\varphi, q \in H^1_{\Sigma}(G)$ making the terms involving p' and c' equal to zero, integrate by parts and use $\partial_{\nu}\varphi = \partial_{\nu}q = 0$ on Γ_w :

$$\begin{split} &\int_{G} k' \nabla p \cdot \nabla q + \int_{G} [D' \nabla c - k' \nabla p \cdot \nabla c] \cdot \nabla \varphi \\ &- \int_{G} \nabla \cdot [k(\nabla q - \tilde{c} \nabla \varphi)] p' - \int_{G} [\nabla \cdot (D \nabla \varphi) + k \nabla \tilde{p} \cdot \nabla \varphi] c' \\ &+ \int_{M} k(\partial_{\nu} q - \tilde{c} \partial_{\nu} \varphi) p' + \int_{M} (D \partial_{\nu} \varphi + H_m \varphi - \beta_m q) c' = 0 \end{split}$$

Since

$$\partial_{\varepsilon_i} E(\varepsilon) = \int_M g(\tilde{c}) c'$$

we set

$$D\partial_{\nu}\varphi + H_m\varphi - \beta_m q = -g(\tilde{c})$$
 on M .

Since also p' is unknown on M, we set

$$k(\partial_{\nu}q - \tilde{c}\partial_{\nu}\varphi) = 0$$
 on M .

-	Ter Gelege Territorial Gost, Diffuencias Larger en (GD(s)	
	官官 王王	

Introduction Literature Review Optimal Porosity... Numerical Results Title Page 44 Page 14 of 20 Go Back Full Screen Close Quit

The adjoint system defined as

I)
$$-\nabla \cdot (k\nabla q) = \nabla \cdot (\tilde{c}\nabla\varphi)$$
 in G
 $\Sigma : q = 0, \qquad \Gamma_w : \partial_\nu q = 0$
 $M : k(\partial_\nu q - \tilde{c}\partial_\nu\varphi) = 0$

Coupled with

- II) $\nabla \cdot (D\nabla \varphi) k\nabla \tilde{p} \cdot \nabla \varphi = 0$
 - $\Sigma:\varphi=0,\qquad \Gamma_w:\partial_\nu\varphi=0$
 - $M: D\partial_{\nu}\varphi + H_m\varphi \beta_m q = -g$

	1 1 1 1 1 1	alectory intel		
ntr	ntroduction			
.ite	rature Re	eview		
Dpt	imal Por	osity		
Vur	nerical R	esults		
		-		
	Title	Page		
	••	••		
	•	•		
	•	•		
	◀ Page 1	• 5 of 20		
	◀ Page 1	► 5 of 20 Back		
	◀ Page 1 Go 1	5 of 20		
	◀ Page 1 Go 1 Full 5	5 of 20 Back		
	Page 1 Go a Full 5	5 of 20 Back		
	A Page 1 Go Full ≤ Cli	► of 20 Back Screen		
	Page 1 Go I Full 5 Cl	5 of 20 Back Screen		
	Page 1 Go Full 5 Cli Q	► 5 of 20 Back Screen ose		

To Control Academic St

Then

$$\begin{array}{lll} \partial_{\varepsilon_i} E(\varepsilon) &=& \displaystyle \int_M gc' \\ &=& \displaystyle \int_G [k' \nabla p \cdot \nabla q + (D' \nabla \tilde{c} - k' \nabla \tilde{p} \cdot \tilde{c}) \nabla \varphi] \end{array}$$

where \tilde{c},\tilde{p} are the solutions of the state equations, and φ,q are the solutions of the adjoint equations.

<u>Remark:</u> For each ε – iteration, we only need to solve the state and adjoint equation to obtain on optimal porosity by means of

$$\varepsilon_i^{n+1} = \varepsilon_i^n - \partial_{\varepsilon_i} E(\varepsilon^n).$$

Title Page		
44	••	
•		
Page 16 of 20		
Go Back		
Full Screen		
Close		
Quit		

4. Numerical Results

Thank You

Title Page		
44	••	
•	Þ	
Page 18 of 20		
Go Back		
Full Screen		
Close		
Quit		

4.1. Effect of the Geometric Design of Γ on the FC

Designing the shape of Γ so that

the **oxygen mass flux** $N_{o,y}$ is as uniform and as large as possible on the catalyst layer (CL)

and the in/out $\mathbf{pressure}\ \mathbf{drop}\ \mathbf{p_{in}}-\mathbf{p_{out}}$ along the channel as small as possible.

Or equivalently, find Γ that minimizes the following cost functional:

$$E(\Gamma) = \int_M \left(N_{o,y} - \frac{1}{M} \int_M N_{o,y} \right)^2,$$

where a, b and e are some given nonnegative constants.

The variables $N_{o,y}$ and p_{in} are obtained through a state problem solved on A and G.

4.2. Optimal Design of the Air Channel

This shape design of Γ improves the FC's efficiency as

- the catalyst layer is entirely used by the reactants
- accumulation of water and heat is reduced

