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 Advanced Imaging Technology (AIT) passenger screening systems 

identify potential threats in millimeter-wave images

Dielectric Measurement
Motivation
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A TSA officer demonstrates the use of full-body scanners 

at Ontario International Airport.

(Irfan Khan / Los Angeles Times December 28, 2015)

• Governing physics:   

Fresnel equations

• Phenomenology:

Refractive index

TARGET

𝑟 = 𝑟1 + 𝑡0𝑟2𝑡1  𝑒𝑖𝜃 +  𝑟1
′𝑟2 𝑒

𝑖2𝜃 +  ⋯   



Resonant Cavity Method 
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low loss sample

lossy sample

• Frequency shift: 

Re e
• Frequency width : 

Im e

• Vary e in EM

simulation to 

match experiment



 Cavity constructed from WR51 waveguide 12.95 x 6.48 mm, 

height 11.09 mm

 Sample embedded in plastic HDPE fixture

 Waveguide transmission line 

 Coupling iris in wall of waveguide and cavity

Experimental Design
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Ref: Weatherall, J.C., Barber, 

J. Smith, B.T., Resonant 

System and Method of 

Determining a Dielectric 

Constant of a Sample, 

U.S. Patent Application 

14/943,362 , Nov. 17, 2015.



WR51 Cavity Spectrum
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• Modes TE102 

and TE301



 Lumped circuit theory?  OR  Field solution

COMSOL RF module

Frequency domain study

Simulation Fidelity
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 Simulation must include effect of the external components 

(network analyzer, waveguide, and coupling iris/antenna)
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Fig. 2. Circuit diagram used to analyze the cavity mode with a parallel
resonant circuit. X s represents the coupling loop inductance. The input
reference plane is located at z = zL , which represents the input connector to

the cavity.

output signals [7]–[10]. Recently, Kajfez [11] introduced an

improved model of a one-port cavity that includes the effects

of a coupling loop on the cavity’s input impedance. In the

design shown in Fig. 1, the output port coupling is very small

(i.e., ≪ 1) so we can, without loss of generality, use Kajfez’s

one-port model to explain the performance of the two-port

cavity. Two-port models can be used to apply the techniques

developed in this paper for more extensive results [12]–[14].

The one-port model used in our analysis is shown in Fig. 2.

Two terminal nodes are used to distinguish the coaxial input

to the cavity (labeled as 1) and a parallel resonant circuit rep-

resenting the cavity mode (labeled as 2.) The coupling loop is

modeled as a series inductive reactance X s , assumed constant

over the bandwidth of the cavity’s frequency response (legit-

imate for high Q cavities.) The resonant circuit impedance is

shown with real part R0 and the cavity parameters Q0 and

f 0 (unloaded Q and resonant frequency) are represented by

the parallel capacitor-inductor combination. From the circuit

model, the unloaded input impedance is given by

Z i n (f )
z= zL

= ȷ X s + R0 1 + ȷ2Q0
f − f 0

f 0

− 1

. (1)

Equation (1) is an approximation to the input impedance that

could be measured by a network analyzer with a calibration

plane at zL . Also, this expression was derived under the

assumption that the frequency bandwidth ∆ f ≪ f 0, which

is generally true for high Q cavities.

In practice, the cavity must be connected to an external

circuit with characteristic impedance Z0, as shown in Fig.

3. The combined loading effect of the loop reactance and

the external circuit on the cavity mode can be analyzed by

calculating the reflection coefficient at node 2 in Fig. 3. This

reflection coefficient is given by

Γ i n (f ) = Γd

⎡

⎣ 1−
2κ

1 + κ
·

1

1 + ȷ2QL
f − f L

f 0

⎤

⎦ , (2)

where the coupling coefficient κ is defined by

κ =
R0/ Z0

1 + (X s / Z0)2
. (3)
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Fig. 3. Loaded circuit representing the resonant cavity when attached to an
external system with characteristic impedance Z0 . The reflection coefficient

Γ i n is calculated at node 2.

The constant Γd, defined as the detuned reflection coefficient,

is the asymptotic value of Γ i n for frequencies far from the

resonant frequency f 0, such that

Γd =
ȷ X s − Z0

ȷ X s + Z0

. (4)

The loaded values for Q and resonant frequency are given by

QL =
Q0

1 + κ
(5)

f L = f 0 1 +
κX s

2Q0Z0

. (6)

IV. CONDITIONS FOR OPTIMUM RESPONSE

In order to produce the maximum amount of carrier suppres-

sion needed for low phase noise oscillators, the cavity must be

engineered to operate optimally at its unloaded resonant fre-

quency. From the equations presented in the previous section

using the circuit model in Fig. 3, this means that Γ i n (f 0) = 0.

In the following discussion, we identify the factors that play

a role in achieving this result

In his analysis of an aperture-coupled cavity, Collin [15]

defines critical coupling as the matched condition at resonance

when the cavity’s input impedance equals the characteristic

impedance of the waveguide. This is actually a very general

definition of critical coupling, and the one we will use in the

following analysis, although our cavity design utilizes loop

coupling. Applying this definition to equation (1) means that

we require

Z i n (f 0) = Z0. (7)

We also have that

Z i n (f 0) = ȷ X s + R0. (8)

Since Z0 is a real number based on the assumption of lossless

transmission lines, these results imply that in order to satisfy

the requirement in (7), two conditions must be met: R0 = Z0

and X s → 0.

Applying these conditions to the cavity when loaded by an

external circuit, we have from (3)

lim
X s →0

κ|R 0 = Z 0
= 1. (9)

489

Riddle, B., and Nelson, C., Proc of the 2005 IEEE Intl Frequency 

Control Symp, p 488-493, 2005.



 Experiment: 

 Measurement of S11 reflection 

coefficient

 Simulation:

 S11 at internal simulation port, 

calibrated to correct loading due 

to measurement system

OR

 Compute input impedance at iris 

from Poynting’s theorem to 

compute S11

COMSOL Simulation
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Numerical

port Instrumental

calibration

Electric field Ey at 19.51 GHz



 One-port calibration, compute corrections:  e00 , e01 , e11

 Three simulations:

1. Metal-backed waveguide, r = 1

2. Metal backed waveguide, displaced DL, r = exp(i2kzDL)

3. Absorber/PML at reference plane, r = 0

Method 1: S11 Calibration 
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REF: Umari, et al., IEEE Trans. 

Instrum. and Meas., 40, 19-24 

(1991). 

(no multi-path)



Method 2: Poynting’s Theorem
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REF: Jackson, Electrodynamics, Sec. 6.9, 3rd ed (1999).

• Expressions computed by 

COMSOL: Wmav, Weav, Qrh
• Input current, Ii , computed by 

integrating displacement 
current over iris aperture

• Input impedance of two-

terminal linear network 

computed from fields

• S11 calculated

Z= R - i X



Results
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Method 2 (Poynting)

Method 1(Calibration)

Experiment

Solution:

e = 2.57 + 0.28i



 Frequency-domain computer modeling accomplishes the 

identification of dielectric constant of material-under-test by matching 

reflection coefficient to experimental measurement.

 Physics-based calculation of the reflection coefficient allows 

calculation at reference planes that are not conveniently connected to 

a simulation port.

 Reference measurement inside resonant system removes effects of 

loading by measurement system.

Work supported by DHS/S&T/EXD

Conclusion
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