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Introduction

Many research reactors use plate fuel
Fuel defects from manufacture cause hotspots

— Fuel Segregations
— Non-bonds

Hotspots limit reactor performance

Improving hotspot model:
— Improves safety analysis of existing fuels
— Aids in qualification of new fuels

This works focuses on developing a better non-
bond model



Simplified, 2D Fuel Plate Model
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COMSOL’s Thin Layer Boundary

* Thin layer (TL) and Thermal Contact (TC)
boundaries can be used to reduce meshing
requirements of very small features

* TL is modeled mathematically as:

. Tu_Td
—MNg - qgq = kg a.

* The d and u subscripts indicate the “down” and “up” side

of the boundary, representing coincident nodes on either
side of the boundary

* The altered boundary (bottom of fuel) should
mimic unaltered boundary when k =k




COMSOL’s Thermal Contact Boundary

* Thermal Contact (TC) mathematical model:
— Ng qgq = h (T — Td); with

0.94
* h, = 1.54k m“”( V2 )

Oasp \MaspE

Heat-flux lines

* Rearranging produces

— th —_ th k Tu” Td W|th

Oasp

* Cpe = 1.54m008 (%) ’

* By selecting m, p, and E” so C, =1 and k_=k, the

altered boundary should mimic the unaltered
boundary




Cases Examined

* No non-bonds, No Fuel Segregations (FS)
— Altered boundaries mimic unaltered boundary for
the entire length of boundary

* Non-bonds included, No FS

— Geometric non-bond with standard FEM technique

— TL: adiabatic non-bond with a function for k_
* ks = k € non-bond; k; = 0 € non-bond
p

— TC: non-bond with a similar function for o

* FSincluded, No non-bonds
* Both non-bonds and FS included




No non-bonds, No FS
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results are visually indistinguishable
Normal heat flux along the modified

DT boundary shows oscillations at the
_ _ _ edge in both TL and TC compared to
Fine Finer Extra Fine

the base model
0.0759% 0.0217% 0.0107%

WLl 0.0000%  0.0000% 0.0000%

Base model shows no error in energy balance, TL
and TC show identical errors, as shown above
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Non-bonds included, No FS

Boundary, Normal conductive heat flux (W/m?)

Data set=TL wad minus Base Finer Temperature (K)
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adlabatic Normal heat flux along the modified

- boundary shows oscillations across
- Base wad the non-bond in both TLand TC
m 393 393 390

compared to the base model

M 14.4 15 11.6 ** Introduction of a non-bond does not
change the energy balance errors in TL
and TC, however including a geometric

Maximum temperature and temperature

increase caused by the inclusion of a non-bond causes a 0.062% error in

non-bond (wad) in the 3 models energy balance for the base model (that
remains constant for both Finer and Extra
Fine grids)
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FS included, No non-bonds

Data set=Base wfs minus Base Finer Temperature (K) - Boundary, Normal conductive heat flux (W/m?)
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1.I
boundary showing oscillations
m Finer Extra Fine experienced by TL and TC with the
R  -0.229% 0.122% introduction of a simulated fuel
segregation along the modified
AIEESEY  0.019% 0.010%
boundary
LR GREEIR 0.000% 0.000%

Base model shows no error in energy balance,
TL and TC show identical errors shown above
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Thickness [m]

Both non-bonds and FS included

Data set=TC wfs wnb minus Base Finer 1 Temperature (K)

Temperature increase caused by a FS
coincident with a non-bond
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increase caused by the inclusion of a FS
(wfs) and a non-bond in the 3 models
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Energy balance errors for all 3 models
with a FS and a non-bond
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Mesh and Order Comparison

Boundary, Normal conductive heat flux (W/m?) x107
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* Additional cases were run to examine the
effects of grid refinement and element order
on oscillations near discontinuities
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Discussion and Conclusion

TC and TL both experience distortions in fluxes
and temperatures relative to a traditional FEA
model with a refined mesh

Errors in energy balance are more severe with
only a fuel segregation than in any other cases
examined

Refining the mesh on TC and TL, as well as
increasing the element order reduce distortions
Both thin layer and thermal contact modeling
options are similar in performance

Care must be exercised in mesh development to
ensure flux distortions within the TL and TC
boundary layer features are at acceptable levels




Questions?
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