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Abstract: A frequency-domain finite element 
(FE) technique for computing the acoustic 
scattering from axially symmetric fluid-loaded 
structures subject to a nonsymmetric forcing 
field based on Ref. 1 is extended to poroelastic 
media and implemented in COMSOL 
Multiphysics. This method allows for the 
scattering body to consist of any number of 
acoustic, elastic, and poroelastic domains. The 
elastic and poroelastic domains are implemented 
using “Weak Form PDE” interfaces. Verification 
cases that illustrate scattering due to fields where 
the Fourier coefficients of the incident field are 
and are not known analytically are considered. 
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1. Introduction 

  
Thanks to advances in computing 

technology, the finite element method (FEM) is 
now a feasible choice for the calculation of the 
scattering response of geometrically complex 
structures due to their interaction with an 
acoustic field. One such usage of the FEM in 
underwater acoustics is prediction of the acoustic 
signature of objects on or in the seabed for 
classification purposes, as discussed in Ref. 2. 
Full-scale simulations like those described in 
Ref. 2 can be computationally expensive, 
especially when the domain being simulated is 
large compared to an acoustic wavelength. This 
cost can be somewhat mitigated when the 
scattering body is axially symmetric through the 
technique described by Zampolli and coworkers 
in Ref. 1, where Fourier decomposition allows 
for the calculation of the full three-dimensional 
solution using a series of less computationally 
intensive two-dimensional simulations. It is the 
goal of this paper to describe how this technique 
can be extended to poroelastic media and 
implemented in COMSOL Multiphysics.  
 
 

 
2. Problem Description 
 

The general class of problem being addressed 
in this work is shown in Figure 1.  

 

 
Figure 1. Depiction of axisymmetric scattering 

problem. 
 
An axially symmetric yet otherwise arbitrarily 
shaped object consisting of fluid, elastic, and 
poroelastic domains is surrounded by an exterior 
fluid domain of infinite extent and insonified by 
a nonsymmetric acoustic field, such as an 
obliquely incident plane wave. The governing 
equations used to model the fluid, elastic, and 
poroelastic domains are standard and are as 
given in Ref. 3. In general, the incident field (or 
any field) can be decomposed into a Fourier 
series and can be expressed as 
 
!!"# !, !, ! = !! !, ! !!!"#!

!!!! ,    (1) 
 
where 
 
!! !, ! =    !

!!
!!"# !,!, ! !!"#!"

!
!!  .  (2) 

 
This decomposition is the basis of the 
axisymmetric formulation described in the next 
section.  
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3. Axisymmetric Formulation 
 
 The Fourier decomposition of the incident 
field given by Eqs. (1) and (2) points the way 
toward a method in which the fully three-
dimensional solution can be assembled from a 
series of two-dimensional simulations. Since the 
model geometry is axially symmetric and each 
!!(!, !) is independent of !, it can be shown 
that the fully three-dimensional solution can be 
constructed by solving for the scattering 
response due to each !!(!, !) and using the 
following equation: 
 
! !, !, ! = !!!

!!!! (!, !)!!!"#,   (3) 
 
where !(!, !, !) is a field quantity (dependent 
variable) such as pressure or the displacement in 
a given direction (i.e., !, !,!) and !!(!, !) is the 
component of the scattered field quantity 
corresponding to the forcing !!(!, !). 
 In short, the steps of the Fourier 
decomposition technique are as follows. First, 
the Fourier coefficients, !!, of the incident field 
are calculated using Eq. (2). Next, these Fourier 
coefficients, which are by definition 
axisymmetric, are used as the incident fields in a 
series of axisymmetric calculations to obtain !!, 
where each !! is the scattered field solution 
corresponding to a given !!. Finally, the 
corresponding fully three-dimensional scattered 
field solution ! is constructed using Eq. (3).  
 Application of the proposed technique to 
fluid and elastic domains is well described in 
Ref. 1 and the reader is directed to that reference 
for more detail. Application to poroelastic media 
is carried out in a similar way by substituting Eq. 
(3) for the dependent variables in the poroelastic 
weak formulation given in Refs. 3 and 4.  
 
4. COMSOL Implementation 
 

This section deals with how models using the 
Fourier decomposition method described above 
can be constructed using COMSOL 
Multiphysics. First, fluid domains are discussed. 
Next, elastic and poroelastic domains and the 
added complexities they bring are covered. Then, 
implementation of the incident fields described 
by Eqs. (1) and (2) are considered. Finally, 
meshing considerations are briefly mentioned. 

 
4.1 Fluid Domains 
 
 The axisymmetric formulation described in 
Section 3 is easily implemented for fluid 
domains (both interior and exterior) using the 
“Pressure Acoustics, Frequency Domain” 
interface of the Acoustics Module. When the 
“Pressure Acoustics, Frequency Domain” 
interface is added to the model, the user is able to 
easily input a desired circumferential 
wavenumber, which corresponds to the ! in 
Eqs. (1), (2), and (3). When the circumferential 
wavenumber is nonzero, the equations of 
motions implemented by the Pressure Acoustics 
interface are equivalent to those given for fluid 
domains in Ref. 1.   
 For exterior fluid domains, the Sommerfeld 
radiation condition should be enforced through 
use of either radiating conditions, infinite 
elements, or perfectly matched layers. It is the 
opinion of the current authors that perfectly 
matched layers are the most robust of these 
techniques due to their superior performance in 
absorbing obliquely incident waves; it is 
therefore recommended that perfectly matched 
layers with thickness equal to one acoustic 
wavelength and rational coordinate stretching be 
used in most cases.  
 
4.2 Elastic and Poroelastic Domains 
 
 Unlike the case with fluid domains, 
implementing the axisymmetric formulation for 
elastic and poroelastic domains is nontrivial. 
While the axisymmetric form of the equations of 
motion for an acoustic fluid implemented in 
COMSOL allow for a nonzero circumferential 
wavenumber, the elastic and poroelastic 
equations of motion included in the “Elastic 
Waves” and “Poroelastic Waves” interfaces 
always assume ! = 0.  Therefore, the governing 
equations must be completely entered by the 
user. While there are many ways to go about 
entering these equations in COMSOL, the 
authors decided to use several “Weak Form 
PDE” interfaces.  
 In general, three “Weak Form PDE” 
interfaces are necessary for problems including 
both elastic and poroelastic domains (one where 
the three elastic displacement components are 
defined, one where the three poroelastic 
displacement components are defined, and one 
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where the poroelastic pressure is defined). The 
volume integral portions of the weak forms 
given by Ref. 1 for elastic domains and Refs. 3 
and 4 for poroelastic domains are entered using 
the “Weak Form PDE” nodes. In order to couple 
the fluid, elastic, and poroelastic domains, the 
coupling conditions given by Ref. 3 are 
implemented using either “Weak Contribution” 
nodes or “Dirichlet Boundary Condition” nodes, 
depending on whether the coupling condition in 
question is natural or essential.  
 
4.3 Incident Field 
 
 As in most acoustic scattering calculations, 
the incident field is implemented using a 
“Background Pressure Field” node in the 
“Pressure Acoustics, Frequency Domain” 
interface. If the integral in Eq. (2) can be 
evaluated analytically (as in the case of an 
obliquely incident plane wave), the analytical 
expression for !! can be entered as a user 
defined background field. If the integral in Eq. 
(2) does not admit an analytical solution, the 
integral itself can be numerically evaluated in 
COMSOL using the integrate command. For 
instance, for a generic incident field defined as 
an analytic function under the definitions tab 
called pinc with arguments !, !, !, Eq. (2) can be 
implemented by setting the user defined 
background field to 
1/(2*pi)*integrate(pinc(r,psi,z)*exp(1i*m*psi), 
psi,-pi,pi).  
 
4.4 Mesh 
 
 When attempting to resolve wave physics 
using quadratic shape functions, as is the default 
in COMSOL, a good rule of thumb is to have 
elements be of relatively uniform spacing and 
sized no larger than !/6, where ! is the 
wavelength corresponding to the slowest wave 
supported by the medium. The current authors 
have found that the performance of perfectly 
matched layers is improved when a structured or 
mapped mesh is used for PML domains and the 
elements are sized no larger than !/10. 
 
5. Verification Cases 
 

A relatively simple problem will be used to 
showcase the effectiveness of the method 
presented in this work. The model consists of an 

aluminum shell (elastic) filled with sand 
(poroelastic) surrounded by water (fluid), as 
shown in Figure 2. The outer radius of the shell 
is 0.1 m. The shell thickness is 25%. The water 
is surrounded by PMLs equal to one acoustic 
wavelength in thickness. The sound speed and 
density of the water are set to 1530 m/s and 1023 
kg/m3, respectively. The compressional speed, 
shear speed, and density of the aluminum are set 
to 6300 m/s, 3000 m/s, and 2700 kg/m3, 
respectively. The poroelastic properties used for 
sand are given in the Appendix. The frequency is 
fixed at 10 kHz.  

 

 
Figure 2. Verification model geometry. 

 
 Two incident fields are considered to 
demonstrate the implementation of plane wave 
and general field incidence. For each case, the 
target strength is calculated by assigning a “Far-
Field Calculation” node set to “Full Integral” on 
the PML-water interface. The total far-field 
pressure at 100 m range is obtained through use 
of Eq. (3), with the Fourier series truncated at 
some acceptable ! = !. The target strength is 
then calculated using the following expression: 
 

!"(!) = 20 log!"
! !!"#(!,!)

!!"#
,      (4) 

 
where !!"# is evaluated in the ! = 0 plane, 
! = 100 m, and !!"#  is assumed equal to 1 Pa. 
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For both incident fields considered, the accuracy 
of the proposed technique will be verified by 
comparing the target strength for a normally 
incident (axisymmetric) field calculated using 
the built-in physics to the results for an obliquely 
incident field calculated following Section 4. 
Since the scatterer is spherical, the target 
strength should be independent of incident angle. 
 
5.1 Plane Wave Incidence 
 
 For the first model, a plane wave incident 
field is used to demonstrate the case where an 
analytical expression for !! is known. For a 
plane wave, the analytical Fourier coefficients 
are 
 
!! = !! exp !"# sin! !!(!" cos!),    (5) 
 
where ! is the incident angle (! = 90° denotes a 
wave traveling in the negative z-direction) and 
!!(!) represents the Bessel function of order !.  
 The target strengths for incident angles of 
90° (calculated with the built-in physics) and 0° 
(calculated with the user implemented physics) 
are shown in Figure 3. For the off-normal case, 
17 terms were calculated in accordance with the 
convergence criteria given in Ref. 1. It is clear 
from the figure that the target strengths are in 
almost exact agreement, verifying the accuracy 
of the proposed method. 
 

 
Figure 3. Target strength due to an incident plane 

wave. 
 

 
 
 
 

5.2 General Field Incidence 
 
 The second model is meant to demonstrate 
the case where an analytical expression for !! is 
not known. For this case, a Gaussian tapered 
plane wave as given in Ref. 5 is used as the 
incident field. The waist of the beam is set equal 
to the outer diameter of the shell and the Fourier 
coefficients are found numerically, as discussed 
in Section 4.3.  
 The target strengths for incident angles of 
75° and 60° are compared with that calculated 
for normal incidence, as shown in Figure 4.  10 
terms are used to construct the curves 
corresponding to the oblique cases. Again, 
excellent agreement is seen between the normal 
and oblique cases for the range of azimuthal 
angles considered.  
 

 
Figure 4. Target strength due to an incident Gaussian-

tapered beam. 
 
6. Conclusions 
 
 In this work, a method used to construct a 
full three-dimensional acoustic scattering 
solution for the case of axially symmetric 
geometry and nonsymmetric loading is 
presented. The scattering body can consist of any 
number of fluid, elastic, and poroelastic 
domains. Weak Form PDE interfaces are used to 
implement the required physics for the elastic 
and poroelastic portions of the model. 
Verification models are shown to illustrate the 
cases of plane wave and general field incidence. 
These verification examples clearly demonstrate 
the accuracy and utility of the proposed 
decomposition technique.  
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9. Appendix 
 

Table 1: Poroelastic Properties 
 
Parameter Value Unit 
Fluid density 1023 kg/m3 

Fluid bulk modulus 2.395 GPa 
Fluid viscosity 0.00105 kg/(m*s) 
Sediment grain density 2690 kg/m3 

Bulk modulus of 
grains 

32 GPa 

Frame bulk modulus 43.6+2.08i MPa 
Shear bulk modulus 29.2+1.80i MPa 
Permeability 2.5×10!!! m2 

Tortuosity 1.35 -- 
Porosity 0.385 -- 
Pore size parameter 26.5 !m 
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