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The High Flux Isotope Reactor (HFIR) of 

ORNL is a Multi-Purpose User Facility
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HFIR Beam Tubes Provide Pathway for 

Neutron Scattering Experiments

HB-1

HB-2

HB-3

HB-4

A minimum 

coolant flow is 

required to 

prevent damage 

to the irradiated 

Al-6061-T6 beam 

tube due to 

overheating.
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Photo Images of HFIR HB-1 Mock-Up
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HB-1 is a Complex Design that Requires Detailed 

Analysis to Allow for a Reduced Flow
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Remove Parts of HB-1 that are not 

Included in the Analysis

dimensions shown in 
meters
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Cut off HB-1 Flange to Arrive at the 

“to be” Analyzed Geometry

view rotated to expose flow channels at the exit 
of the beam tube thimble

dimensions shown in 
meters
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Break Down HB-1 Geometry to be 

Analyzed: Remove Beryllium Liner

dimensions shown in 
meters
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Break Down HB-1 Geometry to be 

Analyzed: Remove Sleeve

dimensions shown in 
meters
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Take a Slice Down the Center to Create a 2D 

Axisymmetric Geometry for 1
st

Analysis

Extend Previous work 
Ken Childs
Gary Giles

Reproduced CFX-4.2 calculations 
using k-ε turbulence model
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Calculation Purpose and Requirements

1. Extend the range of this figure 
from 15-30 gpm to 3-35 gpm.  

2. Assure that the maximum 
temperature of the pressure-
boundary beam tube remains 
below a structurally-sound 
Al-6061-T6  threshold of 250 °F . 

3. Improve on the calculation using new information and 
tools in geometry accuracy, material properties, thermal 
expansion, turbulence models, multi-physics replaced some 
assumptions.

4. Comply with DOE, ORNL, and RRD requirements for 
nuclear-safety calculation rigor including software quality 
assurance (SQA), and formal calculation preparation.
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“Normal” Mesh Auto-Generated.  Examine Mesh 

Convergence to assure adequate Discretization

dimension shown in
inches



13/26  COMSOL Conference 2016 Boston, Multiphyusics Analysis of HFIR Beam Tube Cooling, J. D. Freels, 10/6/2016

“Refined” Mesh User-Generated.  Extremely Fine 

Boundary Layer Wall Mesh

dimension shown in
inches
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This Problem Requires Coupled Physics to 

Obtain Accurate Results

 Conjugate Heat Transfer – Navier Stokes + Energy Equation
(ur,uz) – velocity, p – pressure, T – temperature

 Turbulence Model (k-ε), or (k,ω), or SST --- requires SST for best results
 Solid Mechanics (u2r,u2z) displacement
 Material Coordinates of Deformed Geometry (R, Z)
 Wall distance from SST turbulence model (G)
 Operational constraints define two free input parameters: (1) power 

level, and (2) beam tube inlet flow rate.
 Boundary Conditions: inlet flow, inlet temperature, exit pressure, exit 

heat flow, insulated boundaries, temperature boundaries, axisymmetric 
boundary, wall boundaries, fixed displacement constraints, prescribed 
mesh displacement from thermal expansion into fluid mesh, and zero 
mesh displacement at appropriate boundaries due to symmetry and 
fixed displacement fluid boundaries.

 Source term: all materials have a heat source applied obtained from 
external program (MCNP)

 Multiphysics coupling from (1) thermal expansion of the solid, and (2) 
temperature dependence of all material properties.
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Due to the Complexity of the Physics, a 

Unique Solution Procedure has been 

Devised as a 4-step Process

1. Solve traditional Conjugate Heat Transfer: segregated by groups 
of variables (G) , (ur,uz,p) , (T) , (k,ω) .  Coarse mesh solution 
supplied as initial condition.

2. Solve for structural mechanics and deformed mesh from thermal 
expansion: segregated by groups of variables (u2r,u2z) , (R,Z).  
Step 1 solution supplied as input to Step 2.

3. Repeat Step 1 with Step 2 solution supplied as input to Step 3.  
The fluid geometry is now altered from the deformation of the 
solid boundary by thermal expansion.

4. Solve for all variables coupled with Step 3 solution supplied as 
input to Step 4.  Variables are segregated into group as before: 
(G) , (ur,uz,p) , (T) , (k,ω) , (u2r,u2z) , (R,Z) .
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 Several mesh densities were examined for this 2D axi-symmetric model up to 
≈ 6.2x106 dof.  A user-generated mesh density of ≈ 2.5x106 dof was settled 
on as the appropriated mesh-converged level of refinement for the SST 
turbulence model.

 A parametric sweep over the entire solution sequence was implemented on 
the inlet flow rate over the range of 35 to 3 gpm in increments of -1 gpm.

 Two power levels were examined: 85 MW (normal operation) and 120 MW 
(extreme steady-state power considered for safety analysis).

 The following table was generated at a nominal flow rate = 22.5 gpm, by 
varying turbulence model type and mesh density

Additional Notes on the Solution Process

Comments – 179.4 °F by comparison 
to previous calculation
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Final Results

Maximum Beam Tube 

Temperature (°F) as a Function of 

HB-1 Inlet Flow (gpm) for 

Conservative Power Level (120 

MW solid line and square symbols) 

and Best-Estimate Power Level 

(85 MW dashed line and circle 

symbols).  Note that the region 

less than 11 gpm is for information 

purposes only and is NOT

recommended for normal 

operation.

Why 11 gpm limit ?
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Nominal Flow (22.5 gpm) Results: k-ε

Solution View at Beam Tube Nose Detailing Temperature 

Contours and Velocity Streamlines for the Nominal Flow and 

Power Levels Using k-ε Turbulence Model.
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Nominal Flow (22.5 gpm) Results: k-ω

Solution View at Beam Tube Nose Detailing Temperature 

Contours and Velocity Streamlines for the Nominal Flow and 

Power Levels Using k-ω Turbulence Model.
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Nominal Flow (22.5 gpm) Results: SST

Solution View at Beam Tube Nose Detailing Temperature 

Contours and Velocity Streamlines for the Nominal Flow and 

Power Levels Using SST Turbulence Model.
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Reduced Flow (3.0 gpm) Results: SST

Solution View at Beam Tube Nose Detailing Temperature 

Contours and Velocity Streamlines for the 3.0 gpm Flow Rate 

and 120 MW Power Using SST Turbulence Model.
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Reduced Flow (11 gpm) Results: SST

Solution View at Beam Tube Nose Detailing Temperature 

Contours and Velocity Streamlines for the 11.0 gpm Flow 

Rate and 120 MW Power Using SST Turbulence Model.
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Solution Video at Beam Tube Nose Detailing Temperature Contours and Velocity 

Streamlines for a Range of Flow Rates from 35-3 gpm and 120 MW Power Using 

SST Turbulence Model.

Sweep Flow (35-3gpm) Results: SST

distance from reactor midplane (inches)
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Conclusions and Recommendations

 Repeated the previous work with k-ε model and obtained 
similar results.

 Expanded the calculation to include a wider range of flow 
rates.

 New calculation includes corrected geometry, variable 
properties, mesh-convergence, thermal expansion, 
turbulence model investigation, and fluid-structure 
interaction due to thermal expansion.

 Successfully reduced the low flow rate from 15 to 11 gpm.

 Recommendations for additional analysis include: (1) more 
accurate heat generation data, (2) expand to 3D analysis, 
(3) obtain field measurements of flow, temperature, and 
pressure to the extent possible to validate the model.
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