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Abstract: Basic features of CO2 storage in deep 
sub-surface layers can be explored by numerical 
modeling.  Highly dynamic convective motions 
are induced by CO2 entering at the top interface 
of a geological formation. The details of the flow 
patterns depend heavily on disturbances of 
physical parameters and also on numerical 
features, like mesh refinement. We explore 30 
scenarios using different disturbances and 
meshes. As a result we obtain a range for mass 
transfer during the different stages of CO2 
storage. Despite the differences in the single 
scenarios the duration of the early convection 
stage turns out to be a constant. Moreover, in the 
late convection stage the range of fluctuations is 
decreasing.    
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1. Introduction

Storage of CO2 in the sub-surface is seen as a 
technology that can contribute to the generally 
accepted goal of a low-carbon society. Real field 
experiments for the development of this 
technology are hardly feasible. Therefore current 
studies utilize the capabilities of numerical 
modelling, to explore the basic behaviour of the 
underground system. 

Concerning the practical application of CO2 
storage many questions are still unanswered. In 
the most favoured scenario CO2 in supercritical 
state is pressed into a deep geological formation 
(Blunt 2010).  Within the permeable layer CO2 
will come to overlie brine and will start to 
dissolve into the deeper part by diffusion.  

Diffusion, however, is the most relevant 
process only in the initial phase. With increasing 
concentrations convective patterns arise in the 
layer, which vice-versa have an effect on the 
diffusion across the upper interface. Mass 
transfer into the system is thus influenced by 
interplay of diffusive and convective regimes.   

Convection is a multi-physics phenomenon, 
in which flow and transport processes are 
coupled. For the coupling the fluid density is the 

crucial parameter. For the highly dynamic 
processes of CO2 storage, with high Rayleigh 
number (see below), the initial phase with pure 
diffusion is followed by a convection phase. The 
latter can be sub-divided in an early stage with 
high and fluctuating mass transfer; and a late 
stage, in which mass transfer is decreasing 
(Hassanzadeh et al. 2007).  

Using COMSOL Multiphysics® the 
development of convective motions is studied in 
a vertical cross-section through the permeable 
geological formation. The highly dynamic 
systems reveal to be highly sensitive to 
disturbances of all kinds. Holzbecher (2016a) 
explores the influence of random and oscillatory 
disturbances of initial and boundary conditions. 
Here, in contrast permanent disturbances of the 
permeability field are considered. The 
inhomogeneity is produced by random fields. 
Moreover the effect of mesh refinement is 
examined.  

The effect of inhomogeneity on density-
driven natural convection of CO2 overlying a 
brine layer was also examined by Farajzadeh et 
al. (2011). These authors use more complex 
realizations of inhomogeneity. In contrast we 
here focus on the temporal development of the 
Sherwood number (see below) representing mass 
transfer within the different stages.   

2. Model Set-up

2.1 Mathematical Description 

Flow and transport in a 2D cross-section are 
described by a non-linear set of two partial 
differential equations: (1) one for the 
streamfunction Ψ, which includes the 
dimensionless Rayleigh number Ra, and (3) for 
the normalized concentration c: 
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g denotes gravity acceleration and H is the 
thickness of the geological formation. The 
dimensionless coordinate system has the x-
direction extending horizontally and the z-
direction vertically. Other parameters are given 
in Table 1. 

Mass transport of CO2 is described by the 
transport equation: 
 

 
   
∂c
∂ t

= ∇⋅(∇c − vc)  (3) 

with 

 
  
vx = − ∂Ψ

∂ z
      and       vz =

∂Ψ
∂ x

  (4) 

 
Holzbecher (1998) provides a detailed 

derivation of the model equations; see also: 
Farajzadeh et al. (2007), Holzbecher (2016a). 
The system is coupled in both directions: due to 
the velocity vector v=(vx,vz)T in the advection 
term of equation (3) and the right hand side of 
equation (1). The coupled system of equations 
(1)-(4) has to be solved simultaneously.  

The given formulation has the advantage that 
all physical parameters are gathered in the 
dimensionless Rayleigh number Ra. With the 
reference values for the parameters given in 
Table 1, and a thickness of 116 m the Rayleigh 
number becomes 5000 – a value, which is used 
in the here documented model runs.   

 
 

Table 1: Reference case parameters (partially taken 
from: Pau et al. 2010) 

 
Parameter Value [Unit] 

Saturated CO2 
mass fraction  

0.0493 

Viscosity µ 0.5947⋅10-3  
Pa⋅s 

Brine density 994.56 kg/m3 

Density difference 
Δρ 

10.45 kg/m3 

Molecular 
diffusivity D 

2⋅10-9 m2/s 

Reference 
permeability kref 

5⋅10-13 m2 

 

2.2 Boundary and Initial Conditions 
 
Boundary conditions have to be specified for 
both variables Ψ and c. CO2 is entering the 
system by diffusion from the upper boundary, 
where we specify a constant high (normalized) 
concentration (c=1). Along all other sides there 
is no further mass input, as the relevant 
concentration gradients as well as the 
streamfunction   gradients vanish. The sketch in 
Figure 1 shows the mathematical formulations of 
these conditions.  

 
Figure 1. Sketch of boundary conditions 
 

As initial conditions we use vanishing 
concentration and streamfunction distributions in 
the entire model region, representing an initial 
state without any flow and a constant low CO2 
concentration. In contrast to the model runs, 
presented by Holzbecher (2016) there are no 
disturbances in boundary and initial conditions. 
Convective motions are triggered here by an 
inhomogeneity of the permeability distribution.   
 
2.3 Use of COMSOL Multiphysics® Software  
 
For the modeling of the differential equations, 
we use the Poisson-mode for the flow equation 
(1) and the convection-diffusion mode for the 
transport equation (3). The velocity components 
in the convection-diffusion mode are determined 
from the streamfunction using definitions (4).  

The inhomogeneous permeability dis-
tribution is represented by the formula  
 

 
  
k(x,z = 1) = kref (1+ ε ⋅rnd(x + z + s))  (5) 

 
where rnd denotes the build-in random 
generator. The seed parameter s is varied in a 
parametric loop. An example distribution of the 
resulting field is given in Figure 2. With the 
parameter ε the size of the disturbances of the 
permeability field can be modified. In the 
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simulations here we assumed only small 
changes, as we used ε=0.001. 

In order to study mesh dependencies we used 
three different triangular meshes of different 
refinement. Table 2 lists the basic mesh 
characteristics. In both modes standard quadratic 
elements on the meshes were selected, which 
results in the given number of DOFs for the 
entire system 
 

Table 2: Finite element meshes 
 

Mesh No. of 
elements 

Degrees of 
freedom (DOF) 

Coarse 1856 17030 

Medium 6282 57140 

Fine 24912 225410 
 

 
Figure 2. Example permeability random field 
distribution (produced for the coarse mesh) 
 

The solution of the coupled system was 
obtained using the direct MUMPS solver with 
row preordering for the monolithic system, 
arising from the discretization of the coupled 
system, i.e. flow and transport systems were 
gathered in a single matrix (see: Holzbecher 
2016). 
 
3. Results 
 

It is well known and also demonstrated in our 
simulations that small disturbances grow into 
prominent fingers. These fingers subsequently 
merge to form larger fingers, developing into 
complex convective flow patterns. While such 
behaviour has been observed in real systems, it is 
also true for the numerical models.  

In the initial stage diffusion and dissolution 
of CO2 across the upper interface is the only 
relevant process and a diffusion layer is build up. 
The second stage (early convection) follows 
when the diffusion boundary layer becomes 
unstable. Convective motions appear, due to 
dense brine moving downward and 
complementary lighter fluid moving upward. 
The thickness of the appearing diffusion layer in 
the different stages and the concentration profiles 
within are affected by the flow pattern in the 
brine formation. In that way natural convection 
enhances the mass transfer of CO2 into the 
formation substantially. In this stage natural 
convection is the dominant process governing 
the mass transfer of CO2 into the brine. 

Experimental and numerical studies have 
shown that the convective mixing appears 
mainly in large fingers (Farhana Faisal et al. 
2013). Downward moving fingers and transients 
with increased density reach the base of the 
permeable formation. In the third stage (late 
convection) the convection eddies become 
weaker, as the density differences in the entire 
system decrease. With increasing carbon trapped 
in the subsurface brine reservoir, the convective 
motions weaken, causing the mass transfer 
across the interface to decrease. Finally, 
diffusion will again become the dominant 
mechanism. 

The simulations using COMSOL Multi-
physics® capture the described behaviour nicely, 
as shown in Figure 3.  

  

  
Figure 3. Concentration distributions (red: saturated 
CO2 concentration, blue: zero CO2 concentration) 
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The results shown in Figure 3 were obtained 
with coarse (left) and medium (right) meshes at 
time instants t=0.0015 (top) and t=0.004 
(bottom). The upper subplots represent typical 
early convection patterns, the bottom subplots 
late convection. In the early convection figures 
the 0.1 contour line is plotted in addition.  

In the fine mesh simulations the onset of 
convection was observed much later, as was 
already found by Holzbecher (2016a). This will 
also be visible in the examinations on heat 
transfer in the sequel.  

The mass transfer at each time instant can be 
represented by the Sherwood number Sh, given 
by integrating the normal fluxes across the 

interface. In the dimensionless system Sh is thus 
given by: 

 

 
  
Sh = ∂c

∂z dx
0

1

∫  (6) 

 
For steady state pure diffusive flux Sh is 1. 

Thus Sh >1 values are a measure for the increase 
of mass transfer in the transient state and/or due 
to convective motions.    

Figure 4 shows the development of Sh in 
time, obtained from 30 different simulations. 
Results obtained with different meshes are 
shown in different colors.   

 

 

 
Figure 4. Development of CO2 transfer into the formation, measured by the Sherwood number Sh for 30 realizations 
of permeability distributions, using three different meshes 
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Clearly the three different stages can be 
identified. In the initial diffusion dominated 
stage Sh shows values around 10 and lower. 
Once convective motions appear, Sh increases in 
short time to reach values above 100. In this 
early convection stage the mass transfer is thus 
very high, but also very fluctuating. The late 
convection stage shows decline of Sh with 
smaller fluctuations. 

The upper sub-figure shows the Sh 
development as function of simulated time with 
the same initial conditions. After a sharp increase 
of Sh the mass transfer fluctuates around a high 
value (Sh>100) for a while, before starting to 
decrease.   

The sharp increase of Sh corresponds with 
the onset of convection. For coarse and medium 
meshes the onset of convection, this appears 
around dimensionless time t=0.0005, for the fine 
mesh it appears later at time t=0.003. 

In order to compare the fluctuations in 
relation to onset of convection, the time line of 
the fine mesh output has been shifted by 0.0025 
to the left, as to be seen in the lower sub-figure 
of Figure 4. Having the onset of convection in 
the figure at the same position, allows a better 
comparison of the duration of the stages and the 
fluctuations within the stages. 

The duration of the early convection stage is 
thus about 0.003 dimensionless time units. 
Fluctuations in this stage are higher than in the 
late convection stage.  

Also a mesh dependency can be observed in 
the lower sub-figure can be observed. Fine mesh 
results show lowest mass transfer along the 
entire simulated time. In the early convection 
stage the medium mesh has highest Sh, while 
with proceeding time in the late convection stage 
the coarse mesh delivers highest mass transfer.   
 
 
4. Conclusions 
 

It is revealed that the convective motions are 
influenced by even small disturbances of 
parameters and by the numerical method. 
Deviations in real systems are surely bigger than 
those numerical disturbances used in the 
simulations here. A single numerical run can 
thus not be taken for predictive purposes. 

The onset of convection turns out to be mesh 
dependent. In the fine mesh simulation regular 
convection cell patterns are more stable, and 

prevent the transition to high mass transfer rates. 
Irregular patterns with single big fingers with 
high Sh numbers emerge thus later than in the 
coarse and medium mesh simulations. Due to the 
fact that real systems are inhomogeneous, the 
fine mesh simulation is questionable. Coarse and 
medium mesh simulations seem to reflect the 
real behaviour of such systems more than the 
fine mesh runs.  

 However, the examination of various 
realizations and numerical features (here: mesh 
refinement) reveals some invariants, which are 
quasi identical in the model scenarios. The 
duration of the early convection stage remains 
the same for all simulations.  Moreover, in the 
late convection stage the range of fluctuations is 
decreasing.    
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