COMSOL CONFERENCE 2016 MUNICH

Liquids: Difference

Rotating Disk Electrode in Ionic between Water and Ionic Liquids

UNIVERSITÀ DEGLI STUDI FIRFNZF

Andrea Giaccherini and Alessandro Lavacchi

Industrial interest

Electroplating of Al

Greener electrolyte for Ag electroplating

Electrolyte for energy storage

Electrolyte

Cathode

Industrial interest: BMImBF₄

The term «Ionic Liquid (IL)» describes salts characterized by a melting temperature below 100 °C, thus we can refer to these substances as «Room Temperature Molten Salts». (RTMS) Some ILs can be used **outside** a glovebox (BMImBF₄).

Their main features are: Low vapour pressure Low flammability •Wide electrochemical window

Viscosity(20°C) Density(20°C)

•Higher viscosity (two order of magnitude higher than water-based electrolytes)

Industrial interest: Motivation AgBF₄ BMImBF₄

2000X

10000X

0.1 A/dm^{-2}

0.2 A/ dm^{-2}

Low deposition rates

0.05 A/dm⁻² • Roughness of the coatings

TRANSPORT PROPRIETIES

Sc = -

 $1.17 \times 10^2 \text{ Ag}(\text{CN})_2$ in Water $1.43 \times 10^5 \text{ AgBF}_4 \text{ in BMImBF}_4$

FEA & Exp: RDE of a model system FeCen/FeCin is well characterized. It has been chose as model for the transport proprieties in IL.

FEA & Exp: theoretical methods

In the case of electroanalytical model, the conductivity is considered to be infinitly high, so the ohic drop across the electrolyte can be neglected and the electric potential is homogeneously distributed in the electrolyte. Only Nernst-Planck equation is needed to model the CV.

1. Solve for the steady state of the Navier-Stokes equations (stationaty velocity field)

2. Solve the time dependent Nernst-Planck equation (with velocity field from 1) in order to solve for the characteristic curve of the RDE voltammetry

- $\left(k\nabla^2\boldsymbol{v}-\rho(\boldsymbol{v}\cdot\boldsymbol{\nabla}\,\boldsymbol{v})-\boldsymbol{\nabla}\,\boldsymbol{P}=0\right)$

$$\begin{cases} \frac{\partial C_i}{\partial t} + \nabla \\ \frac{\partial t}{\partial t} \\ -\nabla \cdot (\sigma_l) \end{cases}$$

 $\boldsymbol{\nabla}\cdot\boldsymbol{\boldsymbol{\nu}}=\boldsymbol{0}$

 $\cdot N_i = R_i$

Zero pressure condition

No slip and no flow

20 -20 -40

FEA & Exp: Physics-dependent meshing

Steady state - Navier-Stokes • Triangular Boundary layer: 50 layers starting from 10 μ m.

Mapped starting from 100 nm.

Time dependent - Nernst-Planck

Boundary layer: 100 layer

Results from FEA: validation

S. Eisele, M. Schwarz, B. Speiser, C. Tittel, Electrochim. Acta. 51 (2006) 5304–5306.

	Water	BMImBF4
scosity(25°C)	0.894mPa s	132mPa s
ensity(25°C)	1000 kg m ⁻³	1211 kg m ⁻³
ffusion coefficient	1.3x10 ⁻⁹ m ² /s	1.3x10 ⁻¹¹ m ² /s
change current density	0.18 A/m ²	0.18 A/m ²

Good correspondance between experimental and theoretical results.

Perfect match between the limit currents.

0.6

0.5

Rotating Speed is 2000 rpm

Inverse problem for the determination of the exchange current densities.

Results from FEA: convection layers

		-10mV	/s peak
		50 mV	/s peak
		100m	V/s peak
		10mV	/s steady state
		50mV	/s steady state
		—100m	V/s steady state
10			
	1/1	16	10
12	14	16	18
12	14	16	18
12	14	16	18
	14	16	18
	14	16	18
	14	16	18
	14		
		16	18 //s peak
	14	16 — 10mV — 50mV	18 //s peak //s peak
12 Cer		16 —10mV —50mV —100m	18 //s peak //s peak V/s peak
er	14 	16 	18 //s peak //s peak //s peak V/s peak //s steady state
er		16 	18 //s peak //s peak //s peak V/s peak //s steady state //s steady state
termination of the second seco		16 	18 //s peak //s peak V/s peak V/s peak //s steady state //s steady state //s steady state
12 Cer	14 	16 	18 //s peak //s peak V/s peak V/s peak //s steady state //s steady state V/s steady state
12 Perf	14 	16 	18 //s peak //s peak //s peak //s steady state //s steady state //s steady state //s steady state
12 Cer		16 	18 //s peak //s peak //s peak //s steady state //s steady state //s steady state
		16 	18 //s peak //s peak V/s peak V/s peak //s steady state //s steady state V/s steady state
terminante de la constante de		16 	18 //s peak //s peak //s peak //s steady state //s steady state V/s steady state
		16 	18 //s peak //s peak //s peak //s steady state //s steady state //s steady state
	14 	16 	18 //s peak //s peak //s peak //s steady state //s steady state //s steady state
	14 	16 	18 //s peak //s peak V/s peak //s steady state //s steady state V/s steady state
		16 	18 //s peak //s peak //s peak //s steady state //s steady state //s steady state
Been and the second seco	14 	16 	18 //s peak //s peak //s peak //s steady state //s steady state //s steady state //s steady state //s steady state

The convection layer it is not well developped at the potential corresponding to the peak

0.

Water

Results from FEA: Breaking of the Levich's law

ficient	1.3x10⁻¹¹ m²/s
	RMImBF4
	132mPa s
	1211 kg m ⁻³
Ficient	1.6x10 ⁻¹¹ m ² /s

Levich's law

 $(mA cm^{-1})$ $(mA cm^{-1})$

5.4 % 98

5.4 % 103.5

3.9 % 101.3

Von Karman's PDEs

2F + H' = 0 $F'' - HF' - F^2 + G^2 = 0$ G'' - HG' - 2FG = 0H'' - HH' - P' = 0

H = F = P = 0, G = 1 $F = G = 0 at z^* =$

Approximations on Levich's law: How to Levich's law $z^* = z \sqrt{\frac{\omega}{\nu}} \qquad G(z^*) = \frac{v_{\theta}}{r_{\omega}} \quad H(z^*) = \frac{v_z}{\sqrt{\nu\omega}} \quad F(z^*) = \frac{v_r}{r_{\omega}}$

$$at z^* = 0$$

= ∞

Cochran's solution

Approximations on Levich's law: the «dragged layer»

Dragged layer

$$\delta_h = 3.6 \sqrt{\frac{\nu}{\omega}}$$

Water: 0.26 mm IL: 2.6 mm (JUST OF HALF OF CYLINDER RADIUS)

Conclusion

 Unexpected features found in the RDE voltammetries have been explained, they arise from the non developping of the convection layers.

 A vessel comparable with the dragged layer impair the development of the velocity field. Non completely developped velocity field are inconsistent with the Levich's assumptions.

Conclusion: Take home message

Inefficent mixing of the electrolyte leads to peaks in the RDE voltammetry.

Inefficient mixing has also a more subtle effect, leading to the breaking of the Levich's Law.

That's what happen when you don't run a good simulation!

Solute Helium Hydrogen Nitrogen Water Nitric Oxide Carbon monoxide Oxygen Ammonia Carbon dioxide Hydrogen sulfide Ethylene Methane Nitrous oxide Sulfur dioxide Sodium chloride

Solute

Sodium hydroxide Acetic acid Acetone Methanol Ethanol Chlorine Benzene Ethylene glycol n-propanol i-propanol Propane Aniline Benzoic acid Glycerol Sucrose

Sc	
590	
620	
630	
640	
640	
670	
720	
720	
730	
730	
750	
800	
830	
1040	
1670	

Approximations on Levich's law: the Schimdt number correction Von Karman's velocity field (H,F,G) $\longrightarrow \frac{\partial C_i}{\partial t} + \nabla \cdot N_i = R_i$ After different approximations (taylor series)

Levich's equation

$j_L = 0.6205 n F D \overline{3} \omega \overline{2} \nu \overline{6} C$

Table I: Comparison of Values for $i(1 - t)/nF(c_{\infty} - c_0)\sqrt{\Omega \nu}$

	New	Newman		Gregory and Riddiford		Levich	
Sc	"Exact"		e°		€"		€0
100	0.026874	0.026892	0.069	0.026970	0.36	0.028799	7.1
200	0.017188	0.017194	0.038	0.017226	0.22	0.018137	5.5
500	0.009471	0.009472	0.015	0.009488	0.18	0.009850	4.0
800	0.006964	0.006965	0.010	0.006975	0.16	0.007200	3.3
1000	0.006016	0.006017	0.009	0.006024	0.14	0.006205	3.1
1200	0.005338	0.005338	0.007	0.005346	0.15	0.005495	2.9
1400	0.004824	0.004824	0.005	0.004830	0.14	0.004958	2.7

Typical range in lonic Liquids: $Sc > 1 \times 10^4$ Levich's approximation very accurate for IL

Newman's equation

$0.6205 n FD\overline{3}\omega\overline{2}\nu\overline{6}C$

$1 + 0.2980 Sc^{-3} + 0.1451 Sc^{-3}$

Typical range in water: 160 < Sc < 1600