PEM Fuel Cell Using Equation-based Modelling

John Blackburn, Neil McCartney

Materials Division, NPL

COMSOL Conference Grenoble October 2015

COMSOL CONFERENCE 2015 GRENOBLE

Channels of inter-digitated fuel cell

Equations to solve

$$\nabla \cdot \left(\sigma_{ele} \nabla V_{ele}\right) + Q_{ele} = 0 \quad \text{Poiss}$$

$$\nabla \cdot \left(-\frac{\rho \kappa}{\eta} \nabla p\right) = F \quad \text{Darce}$$

Poisson's equation

Darcy's Law

Complex Source terms

$$\nabla \cdot \left[-\rho \,\omega_H \sum_{k=1}^2 \bar{D}_{1k} \left\{ \nabla x_k + (x_k - \omega_k) \frac{\nabla p}{p} \right\} \right] = R_H - \rho \,\mathbf{u} \cdot \nabla \,\omega_H$$

Nernst-Planck equation

Maxwell-Stephan equation

$$\nabla \cdot \left[-D_k \left(\nabla c_k + \frac{F z_k c_k}{RT} \nabla V_{mem} \right) \right] \neq \overline{S}_k$$

$$NPL \bigcup_{\text{Normal Physical Laborator}} A$$

Non-linear source terms (agglomerate model)

$$R_{H} = \left(1 - \omega_{H}\right) m_{H} S_{H}^{ano} - \omega_{H} m_{H2O} S_{H2O}^{ano}$$

$$S_{H}^{ano} = -\frac{3f_{ano}}{r_{ano}^{2}} D_{H}^{agg} c_{H}^{agg} \left[\beta_{H} \operatorname{coth}(\beta_{H}) - 1 \right] \le 0$$

$$\beta_{H}^{2} = \frac{i_{ano}^{ref}}{2F} \frac{s_{ano}r_{ano}^{2}}{D_{H}^{agg}c_{H}^{ref}} \left[\exp\left(\frac{F\alpha_{ox}^{ano}\eta_{ano}}{RT}\right) - \exp\left(-\frac{F\alpha_{red}^{ano}\eta_{ano}}{RT}\right) \right]$$

$$\eta_{ano} = V_{ele} - V_{mem} - V_{ano}^{eq} \ge 0$$

COMSOL Module based FE setup

Model Tree └・ ヒ: !: Geom1 Conductive Media DC (Electrodes) Darcy's Law (Darcy) Maxwell-Stefan Diffusion and Convection (Maxwell-Stefan Diffusion and Convection (Nernst-Planck (chnp)		-	Subdomain Settings - Nernst-Planck (chnp)						
		→	Equation ∇·(-D∇cH2O - zu _m FcH2 Subdomains Groups Subdomain selection 1 2	20 V v Me	em) = R - u·⊽cH2O, Σ _k z cM cH3O cH2O In Species 3 Library material:	kc _k = 0, cH2O = conce it Element Color ▼ L	entration, vf	Mem = potential	
🐨 Scalar Expressions				×	Quantity	Value/Expression	Unit	Description	
Name	Expression	Unit	Description		δ _{ts}	1	21	Time-scaling coefficient	
GAno	if(abs(zH)<1e-8,0,if(zH<0.sort(-zH)/ta	1	Special case of zH near		💿 D (isotropic)	DH2O_4	m"/s	Diffusion coefficient	
iAno	iotAno*dHAgg*cHAgg*GAno	- A/m ³	See (36)		O D (anisotropic)	1001	m²/s	Diffusion coefficient	
Q2	iAno	A/m ³	See (36) (>=0)		D			Desetion webs	
vCatTil	vEle-vMem-vCatEq	V	See (27)		ĸ	SH2U_4	mol/(m²·s)	Reaction rate	
iotCat	12.0*F*nuCat/(rCat^2)	s-A/	See (37)		um	DH20_4/(R*T)	s∍mol/kg	Mobility	
zetCat	iCatRef*(rCat^2)*sCat/(4.0*F*dOAgg	1	See (24)		2	0		Charge number	
xiCatOx	F*alpCatOx/(R*T)	s ³ ·A/	See (24)		u	0	m/s	x-velocity	
xiCatRed	F*alpCatRed/(R*T)	s ³ ·A/	See (24)		v	0	m/s	v-velocity	
zO	zetCat*(-exp(xiCatOx*vCatTil)+exp(-xi	. 1	betaO^2 (24)					y volocity	
GCat	if(abs(zO)<1e-8,0,if(zO<0,sqrt(-zO)/ta	1	Special case of 20 near		Artificial Diffusion				
iCat	iotCat*dOAgg*cOAgg*GCat	A/m ³	See (37)						
Q4	iCat	A/m ³	See (37) (>=0)		Coupl	ing dan	aora		
SHAno	-Q2/(2*F)	molí	Molar sink of H2 in c		Coupi	ing dan	guit		
SH2OAno	-lamAno*drag*Q2/F-alAno*(cEqAno-cH	mol/	Molar sink of H2O in		Connot	aonorali			
SOCat	-Q4/(4*F)	mol/	Molar sink of O2 in (yenerai	вег	DE S	
SH2OCat	(2*lamCat*drag+1)*Q4/(2*E) alCat*(c	mol/	Molar source of H20		1.41.1	· .			
RH	N-wH)*mH*SHAno-wH*mH2O*SH2OAno	kg/	Mass sink of H2 in d	SII	ahtiv inc	onsistei	nt ar	oproach	
RO	(1-NO)*mO*SOCat-wO*mH2O*SH2OCat	кg) Iv=2	Mass sink of O2 in c		<u>g</u>				
KHZU	(1-WHZ U///HZU//SHZOCat-WHZU*MO	ky) mol/	Malax source of H2O In (
		mol/	Molar source of H3O+1				INF		
SH30_4	(1-iaiiiAnio), uray, Q2/E+aiAnio"(CEQAn	mol/	Molar source of H2O ± in d				National Phy	vsical Laboratory	
SH20 4		mol/	Molar surve of H2Q in					ysical cabolatoly	
		kal		-					

Specifying a finite element problem

- Pick from a list of predefined systems
 - Good for standard systems like electrostatic, elastic, basic heat flow problems
 - Solver optimised for particular physics system
 - User shielded from mathematics details
 - Not so good for bespoke problems or complex multiphysics systems and non-linearity.
- Enter equations yourself
 - Good for unusual, bespoke equation sets. Can have multiphysics and/or non-linearity
 - General purpose solver: convergence not guaranteed
 - Good if you like mathematics!
 - Total control over system you are solving
 - Traceability back to fundamental physics

McCartney's "Theory of Everything"

$$\frac{\partial \rho_{k}}{\partial t} + \nabla \cdot \left[m_{k} \hat{\mathbf{J}}_{k} - \omega_{k} \sum_{i=1}^{n-1} (m_{i} \hat{\mathbf{J}}_{i}) + \rho_{k} \mathbf{v} \right] = \rho_{k} \gamma_{k} \quad k = 1, 2, ..., n \quad \begin{array}{l} \text{Mass conservation} \\ \text{(n or n-1 issue...)} \\ \text{(chemical potentials assume ideal gas)} \end{array}$$

$$\frac{\partial \rho_{k}}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = 0 \quad \begin{array}{l} \text{Momentum conservation} \\ \text{(Darcy law may be inadequate => Navier Stokes)} \end{array}$$

$$\frac{\partial}{\partial t} \left(\rho \varepsilon + \frac{1}{2} \rho v^{2} \right) + \nabla \cdot \left(\rho \varepsilon \mathbf{v} + \frac{1}{2} \rho v^{2} \mathbf{v} \right) = -\nabla \cdot \left[\mathbf{e} + \sum_{k=1}^{n} (\mu_{k} + Ts_{k}) \left(\hat{\mathbf{J}}_{k} - x_{k} \sum_{i=1}^{n-1} \hat{\mathbf{J}}_{i} \right) + \left(\sum_{i=1}^{n} (m_{i} - m_{i}) \hat{\mathbf{J}}_{i} - \mathbf{\sigma} \cdot \mathbf{v} \right] \right)$$

$$+ \sum_{k=1}^{n} \left(m_{k} \hat{\mathbf{J}}_{k} - \omega_{k} \sum_{i=1}^{n-1} (m_{i} \hat{\mathbf{J}}_{i}) + \rho_{k} \mathbf{v} \right) \cdot \mathbf{b}_{k} \quad \text{Energy conservation}$$

$$(\text{ignored!})$$

Our current simulation comes from simplified mass and momentum conservation laws. Energy balance not even considered yet and this is the most complex eq'n. Unlikely any packaged FE does justice to this theory.

In my opinion...

- Either go for fully packaged system (then you are restricted to basic problems) or set up system completely by hand.
- Comsol allows PDEs to be input manually in three different ways
 - Coefficient mode: specify coefficients of generalised PDE.
- Weak mode: use variational principles. Not PDE. (very general purpose but hard to use)
- General form. Note sure: coefficient mode on steroids...

Coefficient mode

$$\sum_{jkl} \frac{\partial}{\partial x_j} \left(C_{ijkl} \frac{\partial u_k}{\partial x_l} \right) - \sum_j a_{ij} u_i + f_i = \frac{\partial u_i}{\partial t} \quad i = 1, 2, \dots N$$

- Some terms omitted. C-matrix is most important, corresponds to diffusion (permittivity, stiffness etc)
- f-matrix encodes source terms.
- Pattern in C_{ijkl} tensor describes simulation.
 Only difference between quantum transistor and fuel cell is this tensor
- Like DNA of simulation.

C-matrix for fuel cell problem

$$c = \begin{bmatrix} c_{V_{ele}, V_{ele}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & c_{p,p} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & c_{x_{H},p} & c_{x_{H},x_{H}} & 0 & 0 & 0 & 0 & 0 \\ 0 & c_{x_{O},p} & 0 & c_{x_{O},x_{O}} & c_{x_{O},x_{H2O}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{V_{mem},V_{mem}} & c_{V_{mem},c_{H3O}} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{c_{H3O},V_{mem}} & c_{c_{H3O},c_{H3O}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{c_{H3O},c_{H3O}} \end{bmatrix}$$
$$c_{V_{ele},V_{ele}} = \sigma_{ele}I \quad (1,2,4,5)$$
$$c_{x_{H},p} = \frac{\rho \omega_{H}}{p} (x_{H} - \omega_{H}) (D_{1,1} - D_{1,2})I \quad (1,2)$$

 $-\nabla \cdot c \nabla \mathbf{u} = f$

Nernst Planck in coefficient mode

Region dependent variables

Model Builder	Settings					-		
	Variables							
 grotthus3d_density50.mph (root) Global Definitions Pi Parameters Materials Tomponent 1 (comp1) 	▼ Variables							
Definitions						_		
a= Region 2	" Name	Expression	Unit	Description				
a= Scalar Expressions	rhox	rho1x+rho2x	1/m					
Boundary System 1 (sys1)	rhoy	rho1y+rho2y	1/m					
View 1	rhoz	rho1z+rho2z	1/m					
A Geometry 1	rho	rho1+rho2						
Materials	f1	-rho*(v1*wHx+v2*wHy+v3*wHz)	1/m					
Δυ Coefficient Form Electrostatic (c)	f2	-rho*(v1*wH2Ox+v2*wH2Oy+v3*wH2Oz)	1/m					
▲ Δυ Coefficient Form MS Anode (c2)	fv1	rho*(v1*v1x+v2*v1y+v3*v1z)+eps1*px						
Coefficient Form PDE 1	fv2	rho*(v1*v2x+v2*v2y+v3*v2z)+eps1*py			ſ			
Zero Flux 1	fv3	rho*(v1*v3x+v2*v3y+v3*v3z)+eps1*pz						
Initial Values 1	mass	1/(wH/mH+wH2O/mH2O)	kg/mol					
Dirichlet Boundary Condition 1	c_vMem_vMem	F*uH30_2*zH30*cH30	m²/(V·s)					
Coefficient Form MS Cathode (c3)	c_vMem_cH3O	DH3O_2	m²/s			=		
	c_cH30_cH30	-D0*zH3O/zM	m²/s					
Partial Values 1	c_cH3O_vMem	-F*u0*zH3O*cH3O	C/mol					
Dirichlet Boundary Condition 1	c_cH2O_cH2O	DH2O_2	m⁵/(s•m					
▲ Δu Coefficient Form Nernst Planck (c4)	f_vMem	SH30_2						
Coefficient Form PDE 1	f_cH2O	SH30_2				_		
Tero Flux 1						*		

Oxygen mass fraction variation

Built-in module vs. PDE coefficient mode

- Good agreement after some effort
- Here V=0.7 V,
- I=0.3716 A/m (coeff), I=0.406 A/m original
- Careful! E-field not defined on boundary

Effect of varying oxygen mass fraction at inlet

Experimental polarisation curves

The tip of the iceberg...

- Now extended to 3D (previously 2D model)
- Added additional fluid layers outside of the GDL layers for channel flow
- Replaced Darcy with more realistic Navier Stokes
- Unfortunately the last does not converge yet. Equation based modelling allows any equations to be specified but no guarantee you can solve them!
- Work is ongoing.

National Physical Laboratory

Summary

- Derived PDEs for fuel cells which are more advanced than in normal literature
- Solved these equations using Comsol's coefficient mode (equation based modelling)
- Good initial agreement with experimental results (but theory very simple cf experiment)
- Eq'n based modelling is better for complex, multiphysics, non-linear systems. Allows new equations to be solved without waiting for built-in module
- Gives better traceabilty.

National Physical Laboratory