COMSOL CONFERENCE 2015 GRENOBLE

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Radio Frequency Resonator For Continuous Monitoring Of Parallel Droplet Microfluidic Systems

David Conchouso Gonzalez PhD. Candidate King Abdullah University of Science and Technology (KAUST)

Content

Introduction

3

Nano crystals

generators

(Conchouso, 2013)

 Radio Frequency resonator

Introduction

Introduction

Device Description

A radio frequency T-resonator is comprised of an open-end transmission stub and feed lines

 $L = \frac{nc}{4f\sqrt{\varepsilon_{eff}}}$

- The system resonates at odd integer multiplies of its quarter wavelength
- Its response depend on:
- Stub length
- Effective Permittivity of the materials

COMSOL CONFERENCE 2015 GRENOBLE

Device Description

Material	Property	Value
PMMA	ε _r	2.7
Water	ε _r	80.4
Mineral Oil	ε _r	2.1
Copper (Cu)	$\kappa(S/m)$	$5.8x10^7$
Silver (Ag)	$\kappa(S/m)$	$2.5x10^{6}$

Table 1: Material properties used on the simulation

Use of COMSOL Multiphysics

10

11

Conclusions

COMSOL

CONFERENCE

2015 GRENOBLE

- RF sensing is a promising approach for monitoring parallel droplet generation
- The proposed sensor shows frequencies shifts of 50MHz for only a 5% change in water in oil content
- This technology can be integrated to current microfluidic chips and requires of fewer number of probes
- The number of resonators cannot be expanded to several because each needs a finite bandwidth to operate independently.

13

 COMSOL allowed us to quickly vary design parameters for optimization and design

Merci Beaucoup!! Happy to take any questions.