

Modeling Metamaterials with a Time-Domain Perfectly Matched Layer (PML) Formulation

Hisham Assi & Richard Cobbold

TALK OUTLINE

- Motivation: metamaterials
- PMLs formulation for elastic waves
- Why COMSOL?
- On stability and group velocity
- PML formulation for fluid-solid medium
- Molding metamaterial lens in time-domain
- Limitations: metamaterials within the PML
- Summary

METAMATERIALS

Veselago (1960s):

What if both ε and μ are negative?

Opposite group velocity
Negative refractive Index
Focusing using a slab

Pendry(~2000):

Perfect Lens: evanescent waves amplified

Transformation optics: cloaking

For Acoustic: It is the density and the stiffness

Acoustic metamaterials is an active area of research with potential application in acoustic insulation, filtering, cloaking, canceling out aberration, and super-lensing

MOTIVATION: ACOUSTIC SUPER-LENSING

Zhou et al., Appl. Phys. Lett. 105, 233506 (2014)

a $<<\lambda$: Metamaterials with effective parameters

CHALLENGES

PML for elastic wave equation

- Usually first order (not for COMSOL)
- Big number of equation

Komatitsch et al (2007)

	No PML	PML without total	PML with total	C-PML
2D	5	10	15	13
3D	9	24	33	27

Stability for some materials

Fluid-solid coupling

- Two equation for different physics (acoustic, elastic)
- Coupling boundary conditions
- No reported PML formulation for the fluid-solid problem

OBJECTIVES

Our goal is develop time-domain models in order to simulate wave propagation in solids, fluids, and metamaterials, that are numerically efficient and easy to implement, especially for an unbounded domain.

ORIGINAL WAVE EQUATIONS IN 2D

Acoustic wave in fluids

$$\frac{1}{K}\frac{\partial^2 p}{\partial t^2} - \sum_{j=1}^2 \frac{\partial}{\partial x_j} \left(\frac{1}{\rho_F} \frac{\partial p}{\partial x_j} \right) = 0$$

Elastic wave in solids

$$\rho_S \frac{\partial^2 u_i}{\partial t^2} - \sum_{j=1}^2 \frac{\partial}{\partial x_j} \left(\sum_{k,l=1}^2 C_{ijkl} \frac{\partial u_k}{\partial x_l} \right) = 0$$

Coupling at Fluid-solid interface

Form continuity of normal velocity:

$$\sum_{j=1}^{2} n_{F_j} \frac{1}{\rho_F} \frac{\partial \rho}{\partial x_j} = -\sum_{j=1}^{2} n_{F_j} \frac{\partial^2 u_j}{\partial t^2}$$

Form continuity traction:

$$\sum_{j,k,l=1}^{2} n_{S_j} C_{ijkl} \frac{\partial u_k}{\partial x_l} = -n_{S_i} p$$

PERFECTLY MATCHED LAYER (PML)

PML FORMULATION FOR ELASTIC WAVES

Two second order equations (same as the original problem)+ four auxiliary equations

$$\tilde{\rho}_{S}\left(\frac{\partial^{2} u_{i}}{\partial t^{2}} + b \frac{\partial u_{i}}{\partial t} + c u_{i}\right) = \sum_{j=1}^{2} \frac{\partial}{\partial x_{j}} \left(\sum_{k,l=1}^{2} \tilde{C}_{ijkl} \frac{\partial u_{k}}{\partial x_{l}} + a_{j} w_{ij}\right)$$

$$\tilde{\rho}_{S}(\mathbf{x}) = \alpha_{1} \alpha_{2} \rho_{S}$$

$$\tilde{C}_{ijkl}(\mathbf{x}) = \frac{\alpha_{1} \alpha_{2}}{\alpha_{j} \alpha_{l}}$$

$$a_{j}(\mathbf{x}) = \frac{\alpha_{1} \alpha_{2}}{\alpha_{j}} \left(\frac{\beta_{1} \beta_{2}}{\beta_{j}} - \beta_{j}\right)$$

$$\frac{\partial w_{ij}}{\partial t} + \beta_{j} w_{ij} = \sum_{k=1}^{2} \frac{C_{ijkj}}{\alpha_{j}} \frac{\partial u_{k}}{\partial x_{j}},$$

$$b(\mathbf{x}) = \beta_{1} + \beta_{2}$$

$$c(\mathbf{x}) = \beta_{1} \beta_{2}$$

And, the weak form for use in FEM (COMSOL)

$$\int_{\Omega_{S}} \left[\sum_{j=1}^{2} \left(\sum_{k,l=1}^{2} \tilde{C}_{ijkl} \frac{\partial u_{k}}{\partial x_{l}} + a_{j} w_{ij} \right) \frac{\partial \phi_{i}}{\partial x_{j}} + \tilde{\rho}_{S} \left(\frac{\partial^{2} u_{i}}{\partial t^{2}} + b \frac{\partial u_{i}}{\partial t} + c u_{i} \right) \phi_{i} \right] d\Omega_{S} = 0,$$

$$\int_{\Omega_{S}} \left(\frac{\partial w_{ij}}{\partial t} + \beta_{j} w_{ij} - \sum_{k=1}^{2} \frac{C_{ijkj}}{\alpha_{j}} \frac{\partial u_{k}}{\partial x_{j}} \right) \psi_{ij} d\Omega_{S} = 0$$

WHY COMSOL?

 We need more than a black box, but we don't want to reinvent the wheel.

- The Mathematics Interface
- Can access the mass and stiffness matrices

 FEM mesh captures the details of periodic structure better than FD grid.

$$h_0 = rac{1}{N} rac{c_{ ext{min}}}{f_c}$$
 $\Delta t \simeq rac{h_0}{c_{ ext{max}}}$

MODEL VALIDATION: ISOTROPIC SOLID

ON GROUP VELOCITY & STABILITY

Slowness vector --->

From the dispersion relation, $F_0(\omega, k_1, k_2)$,

-0.5

0.4

The **Slowness Curves**

-0.4

0.5

Geometric stability (Bécache *et al*, 2003): A necessary condition for the stability of the PML in x_j direction is

$$S_j \times (V_g)_i \geqslant 0$$

for all points on the slowness curve.

$$\begin{array}{c} x_2 \\ \\ \text{PML} \\ \\ \text{(Fluid)} \\ \\ x_1 \\ \\ \text{(Solid)} \\ \\ \end{array}$$

$$\left\{ \frac{1}{\tilde{K}} \left(\frac{\partial^2 p}{\partial t^2} + b \frac{\partial p}{\partial t} + c p \right) = \sum_{j=1}^{2} \frac{\partial}{\partial x_j} \left(\frac{1}{\rho_{F_j}} \frac{\partial p}{\partial x_j} - a_j v_j \right) + F \qquad \mathbf{x} \in \Omega_F \right. \\
\left. \frac{\partial v_j}{\partial t} + \beta_j v_j = \frac{-1}{\rho_F \alpha_j} \frac{\partial p}{\partial x_j} \qquad \mathbf{x} \in \Omega_F \right. \\$$

$$\begin{cases} \tilde{\rho}_{S} \left(\frac{\partial^{2} u_{i}}{\partial t^{2}} + b \frac{\partial u_{i}}{\partial t} + c u_{i} \right) = \sum_{j=1}^{2} \frac{\partial}{\partial x_{j}} \left(\sum_{k,l=1}^{2} \tilde{C}_{ijkl} \frac{\partial u_{k}}{\partial x_{l}} + a_{j} w_{ij} \right) & \mathbf{x} \in \Omega_{S} \\ \frac{\partial w_{ij}}{\partial t} + \beta_{j} w_{ij} = \sum_{j=1}^{2} \frac{C_{ijkj}}{\alpha_{i}} \frac{\partial u_{k}}{\partial x_{i}} & \mathbf{x} \in \Omega_{S} \end{cases}$$

$$\sum_{j=1}^{2} n_{F_{j}} \left(\frac{1}{\rho_{F_{j}}} \frac{\partial p}{\partial x_{j}} - a_{j} v_{j} \right) = -\sum_{j=1}^{2} n_{F_{j}} \frac{\alpha_{1} \alpha_{2}}{\alpha_{j}} \left(\frac{\partial^{2} u_{j}}{\partial t^{2}} + \frac{\beta_{1} \beta_{2}}{\beta_{j}} \frac{\partial u_{j}}{\partial t} \right) \quad \mathbf{x} \in \Gamma$$

$$\left| \sum_{j,k,l=1}^{2} n_{S_{j}} \left(\sum_{k,l=1}^{2} \tilde{C}_{ijkl} \frac{\partial u_{k}}{\partial x_{l}} + a_{j} w_{ij} \right) \right| = -n_{S_{i}} \alpha_{1} \alpha_{2} \left(p + b P \right) \qquad \mathbf{x} \in \Gamma$$

$$\mathbf{x} \in \Gamma_F$$

 $\mathbf{x} \in \Gamma_S$

 $x \in \Omega_S$

Assi and Cobbold, JASA, (in second revsion)

...AND THE WEAK FORM

$$\int_{\Omega_{F}} \left[\sum_{j=1}^{2} \left(\frac{1}{\rho_{F_{j}}} \frac{\partial p}{\partial x_{j}} - a_{j} v_{j} \right) \frac{\partial \phi}{\partial x_{j}} + \frac{1}{\tilde{K}} \left(\frac{\partial^{2} p}{\partial t^{2}} + b \frac{\partial p}{\partial t} + c p \right) \phi - F \phi \right] d\Omega_{F}
+ \int_{\Gamma} \sum_{j=1}^{2} n_{F_{j}} \frac{\alpha_{1} \alpha_{2}}{\alpha_{j}} \left(\frac{\partial^{2} u_{j}}{\partial t^{2}} + \frac{\beta_{1} \beta_{2}}{\beta_{j}} \frac{\partial u_{j}}{\partial t} \right) \phi d\Gamma = 0,$$

$$\int_{\Omega_{S}} \left[\sum_{j=1}^{2} \left(\sum_{k,l=1}^{2} \tilde{C}_{ijkl} \frac{\partial u_{k}}{\partial x_{l}} + a_{j} w_{ij} \right) \frac{\partial \phi_{i}}{\partial x_{j}} + \tilde{\rho}_{S} \left(\frac{\partial^{2} u_{i}}{\partial t^{2}} + b \frac{\partial u_{i}}{\partial t} + c u_{i} \right) \phi_{i} \right] d\Omega_{S} + \int_{\Gamma} n_{S_{i}} \alpha_{1} \alpha_{2} \left(p + b P \right) \phi_{i} d\Gamma = 0,$$

+ The auxiliary equations

MODEL VALIDATION

^{*} de Hoop et al. (1983). JASA, 74(1), 333-342.

INFINITE SOLID SLAB IN WAVER: METAMATERIALS LENS

... AND ZOOM IN SPACE AND TIME

We observe one of the interesting characteristics of metamaterial: the wavevector and the group velocity have opposite directions, leading to the negative refraction and focusing.

PERIODIC STRUCTURE WITHIN PML: LIMITATION

CAN WE PUT IT ON THE EDGE?

YES, we save in computational domain and we pay only (E2-E1)

SUMMARY

We have developed second-order time-domain PML formulations in order to simulate wave propagation in unbounded solid, fluid, coupled fluid-solid, that are numerically efficient and easy to implement. We used them to simulate the transient response of acoustic metamaterials.

THANK YOU

PERIODIC STRUCTURE WITHIN PML: LIMITATION

Oskooi et al (2008). Optics Express, 16(15)

FUTURE DIRECTIONS: PML & METAMATERIALS

Periodic Structure

- Would PML works for low frequency with only forward wave?
- Would PML work for fluid metamaterials?
- Would PML work in other numerical schemes?

Homogenized Metamaterials

- Materials properties are homogenous but frequency dependent.
- What is the shape of complex stretch function?
- Can complex stretch function parameters be used to stabilize the problem?

COMPLEX COORDINATES STRETCHING

$$\tilde{x} = f(x) : \mathbb{R} \to \mathbb{C}$$

$$\Rightarrow \frac{1}{\partial \tilde{x}} = \frac{1}{\dot{f}(x)} \frac{1}{\partial x}$$

$$\dot{f}(x) = \alpha \left(1 + i \frac{\beta}{\omega} \right)$$

$$u = e^{ikx}$$

Spatial variable, x

BAND STRUCTURE

$$k_1 a/\pi$$

Plane wave analysis

$$\mathbf{u} = \mathbf{u}_0 e^{i(\mathbf{k} \cdot \mathbf{x} - \omega t)}, \ \mathbf{k} \in \mathbb{R}^2 \ \text{and} \ \omega \in \mathbb{C}$$

Substituting it in the elastic wave equation we obtain the dispersion relation

$$F_0(\omega, \mathbf{k}) = \det\left(\omega^2 \delta_{ik} - \sum_{j,l=1}^2 C_{ijkl} k_j k_l\right) = 0$$

with conditions on C_{ijkl} , the four roots, $\omega(\mathbf{k})$ are real and distinct, and a group velocity can be defined

$$V_{g} = \nabla_{\mathbf{k}}\omega = -\frac{\nabla_{\mathbf{k}}F_{0}(\omega, \mathbf{k})}{\partial F_{0}(\omega, \mathbf{k})/\partial \omega}$$

Slowness vector is defined as $S = \mathbf{k}/\omega$, then $F_0(1, \mathbf{S}) = 0$

Ê

