Performance Evaluation of the 19th Century Clipper Ship Cutty Sark: A Comparative Study

Catherine Tonry, Mayur Patel, Christopher Bailey, Wyn Davies, Julian Harrap, Eric Kentley and Peter Mason

Computational Mechanics and Engineering Group,
University of Greenwich

Introduction

- The Cutty Sark is the last surviving complete Extreme Clipper ship
- She was built for the tea trade in Dumbarton in 1869
- In 1872 she took part in the "Tea Races" with another extreme clipper the *Thermopylae* constructed in 1868

The Ships

In addition to the Cutty Sark and Thermopylae two other ships were chosen for comparison: The Farquharson an East Indiaman built in 1820 and the Erasmo a 4-Masted Steel Barque constructed in 1903

Building 3D Geometries

The 2D linesplans then needed to be translated into a 3D Geometry to do this a specialist software package called DELFTShip was used. This software a net of points is created which is then translated into a smooth surface in the shape of the ships

3D Geometries

These 3D geometries were produced using DELFTShip and show the main differences between the 4 Ships. The Cutty Sark and Thermopylae were both extreme clippers and so have a similar design, though there are notable differences.

COMSOL CONFERENCE 2014 CAMBRIDGE

CFD in COMSOL 4.3b

- Modelling was undertaken using the single phase turbulent flow model
- Flow was assumed to be steady state.
- The top was taken to be a slip wall as modelling the waves was neglected

Model Setup

- Modelled in Ships frame of reference
- Domain is 200mx100mx15m
- Slip walls at sides and top of domain
- Inlet with a speed of v₀ m/s
- Zero Pressure outlet at opposite end and underneath
- k-ε turbulence model
- Ship is rotated to model, heel, leeway and trim

v0 = 10 Knots(5.1m/s), 12.5 Knots (6.4m/s) or 17 Knots (9 m/s) depending on the simulation

Mesh – Cutty Sark

- The meshes used were heavily refined around the ship, resulting in a mesh of around 2 Million cells.
- A boundary layer mesh was used around the ship

Convergence

- A direct solver (PARDISO) was used on a Xeon box with 128GB of RAM to speed up solution
- Initially on the refined mesh there were convergence problems and a convergent solution was unable to be obtained.
- To obtain convergence the problem was first solved on a coarser mesh without the boundary layer and then the solution used as the initial conditions to solve on the finer boundary layer mesh

Velocities

COMSOL CONFERENCE 2014 CAMBRIDGE

Pressure

Results

Speed		Cutty Sark		Thermopylae		Farquharson		Erasmo	
m/s	knots	R_{PV}	RF	R _{PV}	RF	R _{PV}	RF	R _{PV}	RF
5.1	9.91					54134	25144		
6.4	12.44	47423	18584	42651	17877			15288	35868
9	17.5	61056	38541	68458	36750			23805	69711
With Representative Heel, Trim and Leeway									
9	17.5	86949	57842	79157	60698				

RPV is the viscous pressure resistance and RF the frictional resistance where:

$$R_{PV} = \sum_A p \cdot n_{\chi}$$
 and $R_F = \sum_A au_W$

p is the pressure n_x the x component of the unit normal to the hull τ_w the wall sheer stress and A the hull surface

Future Work

- Incorporate a freesurface into the model to look at the wakes and calculate the wave making resistance.
- Look at the Bow of the Cutty Sark in more detail its shape is different to the majority of her contemporaries
- Look a detail a

from Basil Lubbock's The Log of the Cutty Sark.

ost her the race!

