Simulation and Experimental Validation of the Core Temperature Distribution of a Three-Phase Transformer Renan Barroso¹ 1. Universidade Federal do Ceará, Fortaleza, Ceará, Brazil

Introduction: The operating temperature of a transformer core heavily influence the service life of the device. With this information, a designer can consider the long-term economic trade-offs and the maintenance engineer can predict the location of hotspots.

Results:

Figure 1. 5kVA Transformer.

Computational Methods: The core of the transformer was considered a constant density heat source whose magnitude is determined by the equivalent circuit parameters. The heat diffusion equation governs the flux inside the core:

Figure 3. Temperature distribution.

Probe	Measurement [^o C]	Simulation [^o C]	Difference [^o C]
T1	37,0	34,7	2,3 (6,22%)
T2	37,0	34,8	2,2 (5,95%)
Т3	37,0	34,7	2,3 (6,22%)
Т4	37,0	34,7	2,3 (6,22%)
Т5	34,0	34,7	-0,7 (-2,06%)
Т6	37,0	34,7	2,3 (6,22%)

 $\dot{q} = -k\nabla^2 T$

The boundaries of the device with the surrounding air were modelled with the Newton's Law of Cooling:

$$\vec{q} = h(T_s - T_{oo})$$

Table 1. Comparison with experimental data.

Conclusions: Despite the number of simplifying assumptions regarding the construction of the model, a low margin of error was found between the experimental measurements and the predicted values of temperature.

References:

 Saraiva N.V., Desenvolvimento de um Sistema de Monitoramento Térmico Aplicado a Transformadores a Seco, Undergraduate thesis. (in portuguese), Fortaleza, Ceará (2013)
 F.P. Incropera, D.P. DeWitt, T.L.
 Bergman, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 6th edition, John Wiley & Sons, 2006.

Figure 2. 3D Model.

Excerpt from the Proceedings of the 2014 COMSOL Conference in Curitiba