

Sensitivity of the Compression-softening Effect to Mesh Imperfections in Compressed Flexures

Sourabh Saha^{*} Aaron Ramirez^{*} Christopher DiBiasio[#] Martin Culpepper^{*}

*Mechanical Engineering, MIT

#Charles Stark Draper Laboratory, Inc.

Flexures as low-cost precise bearings

Flexures rely on flexing/bending of members

Advantages of flexures:

- □ Very low friction
- □ Inexpensive fabrication
- Limitation:
 - □ Small range

Stage for nano-positioning

MIT Precision Compliant Systems Laboratory

COMSOL Conference, Boston 2014

Range of flexures is limited by stiffness

 $\Delta = F / k$

Range can be increased by decreasing stiffness

Stiffness is determined by Young's modulus and geometry

Young's modulus Geometry

Q: Can stiffness be decreased without changing geometry or materials?

COMSOL Conference, Boston 2014

Case study: flexure for linear motion guidance

Need mesh perturbation to vary geometric imperfection

COMSOL Conference, Boston 2014

MeshPerturb: Mesh perturbation toolbox

COMSOL Conference, Boston 2014

MIT Precision Compliant Systems Laboratory

6/11

Step 1: Linear buckling for imperfection shape

Imperfection shape is obtained from linear buckling analysis

Step 2: Bending of compressed imperfect beam

Controllable parameters:

- (1) Amplitude of imperfection
- (2) Preload displacement
- (3) Actuation force

Observable parameter: Displacement field

Softening is imperfection sensitive near buckling

Normalized displacement preload (applied/buckling)

Motion guidance is preserved near buckling

Normalized displacement preload (applied/buckling)

Conclusions

Axial compression reduces transverse stiffness by:

- □ ~25 X for near-perfect straight beam
- \Box ~ 2X for beam with 100 um imperfection

Geometric imperfection leads to:

- □ Early onset of buckling
- Reduced compression-softening effect

Results applicable to:

- Prediction of softening for predetermined imperfection
- Performing engineering trade-off: fabrication tolerance versus performance

Questions?