

Industrial Technology Research Institute

Investigation of transport phenomena in nanochannels and its applications in energy conversion using COMSOL Multiphysics

Speaker: Chih-Chang Chang (張志彰)

Researcher Green Energy and Environment Research Laboratories

2013 COMSOL User Conference, Taipei, Taiwan

- Nanaofluidics: fluid/ion transport
- Electrokinetics: electrical double layer
- Modeling using COMSOL Multiphysics
- Physical problems
- Conclusions

Aquaporins (AQP)

• Slippage

• Electrostatic gate

Potassium channel

Tsukahara et al., Chem. Soc. Rev. 39, 1000 (2010).

New nanofluidics (engineered nanofluidics):

- 1. **Well-designed and controlled nanochannels** are ideal physical modeling systems to study fluidics in a precise manner.
- 2. Learning **new science** using **controlled regular nanospaces**.

Electrokinetics

✓ Electrokinetics refers to transport phenomena related to the non-electroneutral EDL, which is created to neutralize the surface charges produced on surface.

✓ **Surface charges** are produced by the dissociation of surface functional groups:

Electro-osmosis

Electro-osmosis refers to the movement of liquid relative to a stationary charged surface under an external electric field.

Electro-osmotic flow (EOF) in a thin EDL microchannel

Its function looks like a metal-oxide-semiconductor field-effect transistor (MOSFET). Negatively charged dye: exclusion effect

Flow field: incompressible Navier-Stokes equation (continuum theory)

$$\mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{F}_e \qquad \text{where} \qquad \mathbf{F}_e = -\rho_e \nabla \phi$$
$$\nabla \cdot \mathbf{u} = 0$$

Poisson-Nernst-Planck model

Electric field: Poisson equation (electrostatics)

$$\nabla^2 \phi = -\frac{\rho_e}{\varepsilon_f \varepsilon_0}$$
 where $\rho_e = F \sum_i z_i C_i$

Ionic concentration field:

 $\mathbf{j}_i = -v_i z_i F c_i \nabla \phi - D_i \nabla c_i + c_i \mathbf{u} \quad : \text{Nernst-Planck equation}$ $\nabla \cdot \mathbf{j}_i = 0 \quad : \text{Species transport equation}$

▽ 'u=0 Subdoma Subdome

工業技術研究院 Industrial Technology Research Institute COMSOL Modeling using PDE Mode

0 Model Navigator		Model Navigator
New Model Library User Models Open Settings		Multiphysics Component Library User Components
Space dimension: 2D V PDE Modes PDE Modes PDE Modes Conscional PDEs Conscional PDEs Conscional PDEs Deconvectors Equation Heal Include Equation Definition Equation Schoolinger Equation Definition PDE, Configure Equation Wave Equation Definition PDE, Configure Equation OCMSOL Multiphysics. Application mode name: COMSOL Multiphysics. Dependent variable: Application mode name: Element: Multiphysics	tal physics one. Help	Spece dimension: 2D Image: Construction requests Add Remove Add Image: Construction requests Image: Construction requests Image: Construction requests Image: Construction requests
Navier-Stokes eq.	Poisson eq.	Nernst-Planck eq.
tions	Subdomain Settings - Poisson's Equation (poeq)	Subdomain Settings - PDE, Coefficient Form (c)
$(\nabla) \mathbf{u} = \nabla \left[\left[-\mathbf{p} \mathbf{I} + \eta \left(\nabla \mathbf{u} + \left(\nabla \mathbf{u} \right)^T \right) \right] + \mathbf{F} \right]$	Equation	
u = 0 comains Physics Subbiliation Init Element Color Iomain selection Fluid properties and source/sinks I Loba Image: Selection in the select	- V (c Vu) = 1 Subdomains Groups Group selection Coefficients Init Element Weak Color PDE coefficients Coefficient Value/Expression Description c I Diffusion coefficient f I Source term	$ \begin{array}{c c} & (eVu3 - \alpha u3 + \gamma) + au3 + \beta & \forall u3 = f \\ \hline \\$
Active in this domain Q 0 kg/(m ² -s) Source term		Active in this domain

MESH: 28000-32000 quadrilateral elements

Results: compared with analytical solution of PB model

Streaming current

Under a hydrostatic pressure (Δp), the pressure-driven liquid flow carries the charges within EDL towards the downstream end and results in an electrical convection current, namely the *streaming current*.

Streaming current: $I_{str} = S_{str}(-\Delta p) = \int_A \rho_e u_p dA$

140 nm silica nanochannel

C.-C. Chang and R.-J. Yang, J. Colloid Interface Sci. 339, 517 (2009).

Streaming potential

At open-circuit condition (i.e., zero-current condition), the charges accumulate at the downstream end and then an electrical potential difference called the *streaming potential* (i.e., open-circuit voltage, OCV) is produced.

Electro-kinetic battery refers to the external electronic load driven by the electric power from streaming current/potential.

Open circuit voltage verus Short-circuit current

Open-circuit voltage

Short-circuit condition: Concentration polarization

 $\Delta p = 0.05$ MPa

Numerical results: I-V curve

 $\Delta p = 0.5$ MPa

Conversion efficiency

$$u_s = b \frac{\partial u}{\partial y}$$

where b is the slip length

Ion concentration polarization (ICP)

Simulation using COMSOL

Nanofluidic sample preconcentration/ desalination

V_L GND

bio-sample preconcentration
Applications: 2. species separation
3. sea water desalination

Simulation using COMSOL

Electric power → hydraulic power

Track-etched PET membrane

A single conical-shaped nanopore

Electro-osmotic pump using a conical-nanopore membrane

- Forward bias: ion-enrichment
 - → resistance is decreased.
 - → decreased electric field.
- → lower pumping efficiency.
- **Reverse bias:** ion-depletion
 - → resistance is increased.
 - → increased electric field.
 - → amplified EK flow.
 - → better pumping efficiency.

Electrodialysis

RED Sea water CEM AEM CEM AEM CEM AEM CEM Fe³⁺ Fe²⁺ Ch CI Ch Na⁺ Na Na⁺ Na⁺ Cathode Anode Fe³⁺ River water

Electricity → Gibbs free energy of mixing Gibbs free energy of mixing → Electricity

Diffusion current/potential

т<u>ж</u> http://www. http://wwww

COMSOL Multiphysics

- **U** User friendly
- □ Flexibility: PDE mode
- A quick simulation tool for continuum nanofluidics and multiphysics
- A very good tool for researchers and graduated students to speed up their research works.