JOULE HEATING EFFECTS ON ELECTROOSMOTIC FLOW OCCURING IN A CYLINDRICAL CONSTRICTION MICROCHANNEL

Presentation By Sanjay U

Amrita school of Engineering, Amritapuri campus.

Contents

- Introduction
- Microfluidics
- Joule Heating
- Problem definition
- Physics used for simulation
- Basic Equations Used
- COMSOL implementation
- Results
- Conclusions

Introduction

- Microfluidics deals with the precise control and manipulation of fluids and particles which are constrained to a micro scale.
- With the advent of easy micro-fabrication techniques, there has been an increasing development in the lab-on-a-chip (LOC) devices.
- A lab-on-a-chip is a device that integrates several laboratory functions into a single chip of centimeters in size

Electro kinetic Phenomenon

- Application of electric fields along the microchannel controls the movement of bulk fluid and the particles
- three important phenomenon are
 - Electro-osmosis
 - Electrophoresis.
 - Dielectrophoresis .
- These phenomena are used in the microfluidics to manipulate particles and cells like focusing, trapping and separating them.

Concept of Joule Heating

- When a wire is immersed in a mass of water and electric current is applied temperature of the water increased due to the current flowing through the wire for a considerable length of time.
- When voltage difference is applied at the electrodes, electric energy is consumed by resistive fluid as electric current flow through and transformed into heat.

• Heat generated due to joule heating is proportional to the square of electric field

$$Q = \sigma(\mathbf{E} \bullet \mathbf{E})$$

• Where Q is the heat generated in W/m³, σ is the electrical conductivity in S/m and E is the electric field in V/m.

Problem Setup (Sriram Sridharan)

Problem definition

Geometry

Top View

Zoomed in View

- Axisymmetry
- Length 1000 μm.
- Outer radius 250 µm.
- •Inner radius 200 µm.
- Constriction length 200 µm.
- Constriction radius 20 µm.

Exploded View

Physics Used for simulation

• Ac/Dc Module - Electric currents (dc)

 Heat transfer Module – Conjugate heat transfer (Laminar flow)

Basic Equations used

1.
$$\nabla \cdot (\sigma \nabla \phi) = 0$$

2.
$$\rho C_p u \nabla T = \nabla \cdot (K \nabla T) + Q$$

$$Q = \sigma E^2 \, (W/m^3)$$

$$\nabla \cdot (K_{\rm P} \nabla T) = 0$$

3.
$$\nabla \cdot V = 0$$

$$\rho(V.\nabla)V = -\nabla p + \nabla \cdot (\mu \nabla V) + \rho_e E$$

Electro osmotic velocity

$$u_{eo} = \mu_{eo} E$$
 (m/s) (Helmholtz-Smoluchowski Eqn)

$$\mu_{eo} = \varepsilon_0 \varepsilon_r \frac{\zeta}{\mu}$$
 (m²/V.s)

COMSOL Implementation

- 2D Axisymmetry
- Physics
- Geometry Building
- Material Selection
- Boundary Condition
- Meshing
- Post Processing

Boundary Conditions

Figure Electric Boundary Condition Figure: Flow Boundary Condition

Meshing

• The mesh consists of around 7109 triangular elements and about 418 quadrilateral elements

• Average mesh quality of 0.94.

Results

• How Joule heating effects the velocity profile?

• How velocity profile was altered due to Joule heating?

• Comparison of velocity profile with and without Joule heating.

Figure : Velocity and Temperature distribution of a cylindrical microchannel with zeta potential $-10 \ mV$

Figure: Temperature profile along a cylindrical microchannel with zeta potential of -10 mV

Figure: Velocity profile along a cylindrical microchannel with and without Joule heating

Figure : Velocity profile in a cylindrical microchannel cross section with and without Joule heating

Conclusion

• The velocity profile was significantly changed due to the presence of Joule heating and the plug like velocity profile disappeared.

References

- Baoming Li, Daniel Y. Kwok, 2003, A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson–Boltzmann equation, International Journal of Heat and Mass Transfer, 46: 4235–4244.
- Sriram Sridharan, Joule heating effects on electrokinetic transport in constriction microchannels, M-Tech Thesis, Clemson University, May 2011
- Yuejun Kang, Chun Yang, Xiaoyang Huang, 2004, Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under electrokinetic wall effect, International Journal of Engineering Science, 42: 2011–2027.
- Z Shaoa, C.L Renb, and G.E. Schneiderc, 2009, A complete numerical model for electrokinetic flow and species transport in microchannels, Physics Journal. Special Topics, 171:189–194.

THANK YOU