



## Dynamic Simulation of Electrochemical Etching of Silicon with COMSOL

Alexey Ivanov<sup>1, 2</sup> and Ulrich Mescheder <sup>1</sup>

- 1. Furtwangen University, Institute for applied research (IAF)
- 2. University of Freiburg, IMTEK

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Alexey Ivanov, COMSOL Conference 2012, Milan





- o Introduction: electrochemical etching of silicon
- o Model: mesh and geometry
- o Electrical model
- o Diffusion model
- o Conclusions



### Electrochemical etching of silicon (anodization)





Alexey Ivanov - Hochschule Furtwangen University - Institute for Applied Research (IAF)

COMSOL CONFERENCE EUROPE

### Etch form development in the anodization process







### Model mesh and geometry





- The electrical and the diffusion models simulated in 2D with axial symmetry
- The movement of the etch front implemented with the moving mesh interface (ale)
- SiN layer thickness 1  $\mu\text{m}$  , radius of the opening varied in the range 20  $\mu\text{m}$  500  $\mu\text{m}$
- Predefined etch form of thickness 1  $\mu m$  for enhanced mesh movement



### Electrical model: parameters



Etch front movement (ale):  $v_r = -K_E \cdot j_r$   $v_z = -K_E \cdot j_z$   $K_E = \frac{1}{z \cdot e} \cdot \frac{M_{Si}}{\rho_{Si} \cdot N_A}$ *j* – current density, *z* - reaction valence, *e* - elementary charge, where  $M_{si}$  - silicon molar mass,  $\rho_{si}$  - silicon density and  $N_A$  - Avogadro constant.

For the reaction valence of 4 (silicon dioxide formation):  $K_E = 3,1234 \cdot 10^{-11} \frac{\text{m}^3}{\text{A} \cdot \text{s}}$ 

| Material properties: | Domain             | Electrical<br>conductivity [S/m]               | Relative<br>permittivity |             |                                                                                              |
|----------------------|--------------------|------------------------------------------------|--------------------------|-------------|----------------------------------------------------------------------------------------------|
|                      | Electrolyte        | $\sigma_{el.1} = 10^4$<br>$\sigma_{el.2} = 10$ | 80.1                     | 2 un 200 hm | 5000 µm<br>cathode<br>electrolyte<br>x<br>predefined etch form<br>silicon substrate<br>anode |
|                      | Silicon            | $\sigma_{Si} = 10$                             | 11.1                     |             |                                                                                              |
|                      | Silicon<br>nitride | 0                                              | 7.5                      |             |                                                                                              |



Electrical model: electrolyte with high conductivity  $\sigma_1$ 





- No convex-concave form transformation
- Higher etching at the edges runs with self-amplification



### Electrical model: electrolyte with high conductivity $\sigma_1$

HOCHSCHULE FURTWANGEN UNIVERSITY

Opening diameter 1000  $\mu\text{m}$ 





CONFERENCE

10.10.2012

Alexey Ivanov - Hochschule Furtwangen University - Institute for Applied Research (IAF)



Electrical model: electrolyte with low conductivity  $\sigma_2$ 





- Etch form transformation convex - concave

Alexey Ivanov - Hochschule Furtwangen University - Institute for Applied Research (IAF)



### Electrical model: electrolyte with low conductivity $\sigma_2$



Opening diameter 1000 µm



#### Current density distribution

Alexey Ivanov - Hochschule Furtwangen University - Institute for Applied Research (IAF)



### Diffusion model: parameters



Etch front movement (ale), 1<sup>st</sup> order reaction:  $R = k \cdot c$   $v_r = R \cdot K_D \cdot n_r$   $K_D = \frac{M_{Si}}{m \cdot \rho_{Si}}$  $v_z = R \cdot K_D \cdot n_z$ 

where R is the reaction rate at the boundary silicon-electrolyte, m is a number of Fluor atoms needed for dissolution of one atom of silicon.

For m = 6 (in the electropolishing mode in the reaction of silicon dioxide dissolution):

$$K_D = 2,01 \cdot 10^{-6} \frac{\mathrm{m}^3}{\mathrm{mol}}$$

Other model parameters:

- initial electrolyte concentration  $c_0 = 5.7483$  M
- assumed reaction rate constant k = 1 m/s to provide diffusion-controlled process





### Diffusion model: etch form development





- Etch form transformation convex – concave

- Concave isotropic form is achieved when the distance from the opening in the masking layer to the etch front is 25%-35% of the diameter of the opening (in the simulated range of openings 40  $\mu m$  – 1000  $\mu m$ )

Alexey Ivanov - Hochschule Furtwangen University - Institute for Applied Research (IAF)



### Conclusions



- Models for the dynamic simulation of etch front in silicon anodization process presented
- Convex-concave shape transformation was demonstrated with electrical and diffusion mechanisms
- The shape transformation in the electrical model observed only for the electrolyte with low conductivity
- The shape transformation in the diffusion model occurs at the etch depth 25%-35% of the diameter of the opening

### Further work:

- Some assumptions require further investigations (e.g. order of the reaction in the diffusion model)
- Development of the general model with both electrical and chemical properties









#### Acknowledgement:

The presented work in frames of the project #94 µECM (Era.Net RUS) is a part of PhD research performed at the Furtwangen University in cooperation with the University of Freiburg and supervised by Prof. Dr. Peter Woias (University of Freiburg, IMTEK) and Prof. Dr. Ulrich Mescheder (Furtwangen University).

HOCHSCHULE FURTWANGEN UNIVERSITY

# Thank you for your attention!



