Cryogenic Heat Sink for Helium Gas Cooled Superconducting Power Devices

Presentation at the COMSOL Conference 2012
Boston, 3 – 5 October 2012

L. Graber¹, D. Shah¹, D.G. Crook¹, C.H. Kim¹, N.G. Suttell¹, J. Ordonez¹, S. Pamidi¹

¹Center for Advanced Power Systems, Florida State University

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston
Contents

- Introduction
 - Superconducting power cables cooled by helium gas
 - Challenges in cable termination
 - Application of the heat sink
- Finite element model
 - 2D heat transfer
 - 3D fluid flow
- Experiment for model validation
- Conclusions
Superconducting Power Cables

- Superconducting cables for shipboard power system
 - Temperatures below LN2 → higher current density
 - Liquid cryogens not permitted (asphyxiation & explosion hazard)
 - Solution: Helium gas at 50...60 K and 1.8 MPa; flow rate up to 20 g/s

- gHe has lower heat capacity than LN2
 - Cooling more challenging, especially at terminations

Helium circulation system

- 1200 W @ 77 K
- 500 W @ 40 K
- Cylindrical tank
- AL 330
- Cryo Fan
- Top View
- Side View
Model Heat Sink

- **Problem:**
 - Heat influx from ambient
 - Joule heating in bushing

- **Solution:**
 - Heat intercept attached to copper conductor
 - Cold He gas flow through heat sink

- **Design:**
 - Finned heat sink inside tube
 - Entirely made from copper
 - Design and dimensions need to be optimized by FEA
 - Small-scale model built for model validation
Finite Element Model: 2D Heat Transfer

Goal: Determine optimal number of fins
Symmetry: All BC for ½ heat sink

- **Physics**
 - *Heat Transfer in Solids*
 - No CFD, but

- **Boundary conditions**
 - Heat influx 50 W
 - Symmetry
 - Insulation (vacuum)
 - In channels: Convective cooling boundary condition (h = 90 W/m²K for the 9-fin model, obtained by Dittus-Boelter correlation)

- **Initial temperature:** 50 K
- **Material properties**
 - Copper: k, c_p, ρ as a function of temperature
- **Mesh size:** normal (2986 elements for 9-fin model)
- **Pressure drop calculated separately using Moody Diagram**
Maximum heat sink temperature and pressure drop as a function of number of fins for three different mass flow rates

- 9 Fins seem to be optimal
- Flow rates of below 1 g/s are sufficient (50 W input power)
Finite Element Model: 3D Fluid Flow

- **Physics**
 - *Conjugate Heat Transfer*
 - Laminar flow

- **Boundary conditions**
 - Inlet: Helium, 50 K, volume flow rate
 - Outlet: Pressure
 - Heat influx: same as 2D model

- **Helium properties**
 - Density considered constant (at 58 K)

- **Mesh**
 - Fluid domain: normal
 - Solid domain: finer
 - Total 1.54 million elements

- **Convergence**
 - GMRES: 240 iterations
 - Non-lin: 45 iterations

Interesting detail: Temperature BC should not touch solid edge

Temperature field for 100 W heat influx

Simulation time: 156 min (on 2x Intel Xeon X5570)
Experiment for Model Validation

- Made from copper
 - Most parts mechanically machined
 - Fins were machined by EDM
 - Joined by silver braze (optimal heat transfer; leak free)
- Heater based on resistance wire
- Wrapped in aluminized Mylar
- Installed in vacuum chamber

![Image of the experiment setup]
Results of Validation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>50 W for full HS</th>
<th>100 W for full HS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td>Experiment</td>
</tr>
<tr>
<td>Temperature inlet [K]</td>
<td>58.6</td>
<td>58.6</td>
</tr>
<tr>
<td>Temperature increase [K]</td>
<td>4.15</td>
<td>4.7</td>
</tr>
<tr>
<td>Temp. heat sink [K]</td>
<td>63.0</td>
<td>77.3</td>
</tr>
<tr>
<td>Pressure drop [Pa]</td>
<td>284</td>
<td>294</td>
</tr>
</tbody>
</table>

- Generally good agreement between simulation results and measurements
 - Except for heat sink temperature
 - Investigations under way to determine the reason for discrepancy (Model or measurement?)
Conclusion

- The chosen geometry is suitable
 - Low pressure drop
 - Excellent heat transfer
 - Higher flow rates for turbulent flow are under investigation

- The developed models are very useful tools for heat sink design and optimization
 - It will be used for a real application in near future

- Model will be extended to incorporate turbulent flow

- Optimization studies for geometrical parameters (non-uniform spacing of fins; thickness of fins)