液中のナノ粒子分散を目的とした進行波モード超音波振動板の設計

Design of traveling wave ultrasonic vibration disk for nano-particles in Liquid dispersion

○村岡潤一 鈴木庸久(山形県工業技術センター)

Jun-ichi MURAOKA, Tsunehisa SUZUKI, Yamagata Research Institute of Technology

The traveling wave ultrasonic vibration disks for dispersion of particles were designed by using of FEM analysis. The vibration disks are required specific vibration pattern, which contains three nodal lines. The vibration disk thickness was calculated to be matched the resonance frequency of bolted langevin type transducer and the specific vibration pattern. The alignment of the transducer was calculated to minimize the driving force. In addition, acoustics field and flow field caused by the vibration disk was simulated.

Key Words: FEM analysis, traveling wave vibration, composite electroplating

1. 緒 言

ナノ粒子を複合しためっきの形成において,めっき浴中の ナノ粒子の分散状態を保つことは、均一なめっき被膜を得る ために重要である.特に、カーボンナノチューブなどの凝集 性の強い粒子を分散させるためには、通常のスターラー攪 拌では不十分であり、めっき浴あるいはめっき母材に超音波 振動を加える超音波攪拌が有効である¹⁻²⁾.ワーク振動方式 は、定在波振動を用いてめっき母材全体を振動させる方式 で、めっき形成面の大面積化に有効である.しかしながら、 この方式には、定在波振動の節部において分散状態が悪 化する課題があった.そこで筆者らは、空間的に 90° 縮退 した屈曲振動モード(図 1(a)(b))を時間位相 90° で励振す ることにより得られるモード回転型進行波を用いて、節部が 移動する B03(図 1)および B13(図 2)モードの進行波振動 板を設計した³⁾.

超音波振動は、めっき浴内に音圧を与え、キャビテーショ ンにより分散を促進する.そのため、本報告では、有限要素 法を用いて、進行波モード超音波振動板及びめっき浴内の 音場解析を行い、振動モードとめっき浴の高さを変化させた ときの音圧分布を評価した.

2. 実験方法

図3に,FEM 解析モデルを示す.外半径 50mm,内半径 20mmのめっき被膜形成を目的として,半径 50mm までを有 効な振動面とし、57mm より外側を固定した.振動板裏面に,半径 r の同一円周上,90°間隔で領域を設置し,そこに時間位相 90°で片振幅 1µm の強制変位を与え振動源とし,モード回転型進行波を励振した.振動板の上にめっき浴を 設置し,それらの境界で,振動板からの構造的加速度を音 圧に変換するとともに,めっき浴内の音圧を振動板の応力に 変換した.めっき浴の周囲は浴壁および天蓋部に設置する 電極を想定し,固体壁境界とした.

表1に振動板およびめっき浴の物性値を,表2に振動板 形状および解析条件を示す.振動板を,一様で等方性な SUS304とし,それぞれB03およびB13の振動モードを励振 することを目的とした2種類の形状とした.一方で,めっき浴 を,化学種およびナノ粒子を省略した水とした.以上の条件 で,周波数応答解析を行った.めっき浴高さhを 30,50,70mmに変化させ,めっき浴内の音圧,振動板の振幅 を観察した.有限要素法解析は,汎用有限要素法解析ソフ

表	1	解析に用	、た振動板およびめ・	っき浴の物性値
---	---	------	------------	---------

店動店	ヤング率	198 GPa
1反到1次 (SUS204)	ポアソン比	0.29
(303304)	密度	7860 kg/m ³
めっき浴	音速	1481m/sec
(水)	密度	998 kg/m ³

表2 振動板形状および解析条件

	B03 振動板	B13 振動板
振動モード	B03	B13
振動板板厚 t ₁	10mm	7mm
固定部板厚 t ₂	10mm	2mm
強制変位半径 r	40mm	25mm
振動源直径	10mm	10mm
固有振動数	28 k Hz	34 k Hz
強制変位量	1μ m	1μ m
めっき浴高さh	30,50,70mm	30,50,70mm

トCOMSOL Maltiphysics を用いて行った.

3. 解析結果および考察

図 4 に, h=50mm, 固有振動数における振動板の振幅および めっき浴内の音圧分布を断面図で示す.表示した断面は、中心 から振動板の最大振幅を通る面である. 音圧は, 図 4(b)におけ る最大音圧を 1 とした相対音圧で評価した. B03 振動板および B13 振動板のいずれにおいても,音圧は,浴壁及び天蓋からの 反射波の影響により節を生じている.これらの節は、位相を変え てモードを回転させても移動することはなかった.

図 5 に B03 振動板における振動板近傍での音圧と振幅の関 係を示す.中心から振動板の最大振幅を通る断面でグラフを作 成した. 音圧は、めっき形成を想定して高さ 10 µm の位置とし、 B13 振動板 h=50mm の場合の最大音圧(図 6(b))を1とした相 対音圧で評価した. 振動板の振幅は, h=30,50,70mm でほぼ変 化がない. 音圧は, いずれの高さにおいても振幅のピークで最 大となるが, h=50mm (図 5(b)) において, 反射波の影響で A の 位置で節を生じた. さらに, h=70mm(図 5(c))において, 2 箇所 で節を生じた. これらの節の位置は中心から 20~50mm にあるた め,めっきに適していない.

図 6 に B13 振動板における振動板近傍での音圧と振幅の関 係を示す. 振動板の振幅は, 節円より内側では h=30,50,70mm で ほとんど変化がないが、節円より外側では大きく異なり、h=50mm で最大となった. 音圧は, 振幅のピークで最大とはならず, h=50,70mm において, 振幅のピークよりも外側で最大となった. また, B13 振動板は 40mm の位置に振幅の節をもつが, 音圧の 節は、h=30mmにおいて、2箇所に生じた一方で、h=50,70mmに おいて, 生じなかった. 加えて, 音圧のピーク値は, h=50mm に おいて, B03 振動板も含めて最大となり,他の条件と比較して 3~8倍と非常に高い値となった.

以上の結果より、振幅と音圧の傾向は、節やピークにおいて必 ずしも一致せず,めっき浴の高さの影響を受けていることがわか った.これは、浴壁及び天蓋からの反射波の影響であると考えら れる. また, B03 振動板では h=30mm が, B13 振動板では h=50mm および 70mm が, 振動板近傍に音圧の節がないため, めっきに適している. 加えて, B13 振動板, h=50mm は音圧が非 常に高くなるため、特に有効である.

4. まとめ

有限要素法を用いて,進行波モード超音波振動板が与えるめ っき浴内の音圧について, 音場解析を行ったところ, 以下のこと が分かった.

- 1) めっき浴内の音圧は、浴壁および天蓋からの反射波で節を 生じる.この節はモードを回転させても移動しない.
- 2) B03 振動板 h=50,70mm, B13 振動板 h=30mm は, 振動板 近傍の音圧に節が生じるため、めっきに適していない.
- B03 振動板 h=30mm, B13 振動板 h=50, 70mm は, 振動板 3) 近傍の音圧に節を生じない. 特に, B13 振動板 h=50mm は, 他の条件と比べ, 音圧が 3~8 倍大きく, めっきに適してい る.

謝辞

本研究の一部は, NEDO 平成 18, 20 年産業技術研究助成事 業として行われたものである. 記して感謝する.

参考文献

- 1) 鈴木庸久他;山形県工業技術センター報告,No.38,1-5 (2006)
- 2) 鈴木庸久他:表面技術協会第 121 回講演大会講演論文 集,178(2010)
- 村岡潤一他;日本機械学会東北支部第47期秋季講演会講 3) 演論文集,1017(2011)

図6 B13 振動板の半径に対する音圧と振幅の関係