

Chiral surface plasmon polaritons on metallic nanowires

张顺平,徐红星

中国科学院物理研究所 纳米物理与器件实验室 N03组

上海, 2011 - 10 - 25 Presented at the 2011 COMSOL Conference China

Waveguides

Nature, 440(23), 508-511(2006)

Imaging

Optical computing

Nat. Commun. 2, 387 (2011)

Chemical bio-sensing

Extraordinary optical transmission

Nature 391, 667-669 (1998)

Metamaterials

Science 315, 1686 (2007)

Nonlinear optics

Nature 453, 757-760 (2008)

Surface Plasmon Polaritons

Nature, 424, 824 (2003) And also THz, Infrared detection, LED, enhanced optical catalysis, optical force ...

SERS

Phys. Rev. Lett. 83(21), 4357 (1999)

Cancer therapy

Acc. Chem. Rev. DOI: 10.1021/ar200023x

Science 312, 1780 (2006)

Solar cell

Nat. Mater., 9, 205-213 (2010)

Ag nanowires as plasmonic fibers

- Crystallized structures
- Small SPPs mode volumes

H. Ditlbacher, et al. Phys. Rev. Lett., 95, 257403 (2005)

- Low intrinsic loss compared to other metals
- Ease access for manipulators

Y. R. Fang & H. Wei, et al. *Nano Lett.* 9, 2049-2053 (2009)

What's chiral?

Y. *Liu, X. Zhang, Chem. Soc. Rev.* DOI:10.1039/c0cs00184h

Chiral objects

Chiral electromagnetic waves

Chirality is one fundamental aspect of an optical field.

Y.Q. Tang, A. E. Cohen. Science 332:333-336 (2011)

Excitation of nanowire SPPs

COMSOL 3.5a, 2D, RF module > Perpendicular wave > Hybrid-Mode Waves > Mode analysis

A $\pi/2$ phase delay between m = -1 and 1 modes!

Superposition of different modes forms chiral SPPs

S. P. Zhang, et al. Phys. Rev. Lett., 107, 096801 (2011)

Tunable helix period

The period of the plasmon helix :

$$\Lambda_{mm'} = 2\pi \left(\Delta k_{mm'}\right)^{-1}$$

$$\Delta k_{mm'} = \left| k_{m,\square} - k_{m',\square} \right|$$

The helix period depends on the size, material, dielectric medium and excitation wavelength

S. P. Zhang, et al. Phys. Rev. Lett., 107, 096801 (2011)

Quantum dots fluorescence imaging reveals the chirality of the SPPs

Scale bar: 5 μ m

Phys. Rev. Lett., 107, 096801 (2011)

Chiral SPPs generate circularly polarized light

A subwavelength circularly polarized light convertor (1/4 wave plate)

Phys. Rev. Lett., 107, 096801 (2011)

Broadband tunable nanoprobes

Phys. Rev. Lett., 107, 096801 (2011)

Applications

I. Metallic nanowires-based circuits

Yurui Fang, et al. Nano Lett., 10, 1950–1954 (2010)

Hong Wei, et al. Nano Lett., 11, 471-475 (2011)

II. Subwavelength circular polarized light source

- SPPs-chiral molecule interactions
- Ag nanowires as scanning probes in aSNOM / TERS tip?
- All-optical magnetic recording and Spintronics

Conclusions

• Chiral SPPs can be generated by linearly polarized light incident at the end of a nanowire, exciting a coherent superposition of three specific nanowire waveguide modes.

• Chirality is preserved in the emitted photons, creating a subwavelength ¼ wave plate.

Publications using COMSOL (2010-2011)

- (1) S. P. Zhang, et al. Phys. Rev. Lett., 107, 096801 (2011)
- (2) S. P. Zhang, et al. Nano Lett., 11, 1657-1663 (2011)
- (3) Z. P. Li, et al. Small, 7(5), 593-596 (2011)
- (4) Y. R. Fang, et al. Nano Lett., 10, 1950-1954 (2010)
- (5) K. D. Alexander, et al. Nano Lett., 10, 4488-4493 (2010)

Acknowledgement

Thanks

Prof. Hongxing Xu, Peter Nordlander, Naomi Halas

Dr. Hong Wei, Kui Bao and Ulf Håkanson

Thanks COMSOL, for a open and friendly simulation platform.

Thank you !