<u>A. Weddemann</u>,* J. Jadidian, Y.S. Kim, S.R. Khushrushahi, M. Zahn Presented at the 2011 COMSOL Conference Boston, MA

Massachusetts Institute of Technology

Ferromagnetic materials for MEMSand NEMS-devices

Towards the design of novel spintronic devices

*email: weddeman@mit.edu

How to describe ferromagnetism?

Magnetic nanoparticles

Superparamagnetic multi-core beads

A. Weddemann

10/13/2011

12

10

Magnetic nanoparticles

5

From clusters to monolayers

Magnetic multilayers

A. Weddemann

10/13/2011

Magnetic multilayers

Weak equations for finite element discretization

Projections:
$$\tilde{\varphi}_{mag} = \varphi_{mag} \circ \Phi_i$$

 $m = \tilde{m} \circ \Phi_i^{-1}$
Layer stray field
 $\Delta \varphi_{mag} = M_S \nabla m$
 $\int_{\mathbb{C}^3} \int_{\mathbb{C}^3} \int_{\mathbb{C}^3} \int_{\mathbb{C}^3} \frac{\partial \tilde{m}}{\partial t} dx$
 $= -\frac{2A}{\mu_0 M_S} \sum_{x,y,z,\Omega_{mag}} \int_{\mathbb{C}^3} \frac{\partial \tilde{m}}{\partial x_i} \frac{\partial \Psi}{\partial x_i} dx$
 $+ \frac{2K_1}{\mu_0 M_S} \int_{\Omega_{mag}} \langle \Psi, \tilde{m} \times \Theta \rangle \langle \tilde{m}, \Theta \rangle dx$

A. Weddemann

7

10/13/2011

Magnetic multilayers

Next step?

FEM-BEM

Strongest limitation (also for analysis of additional effects such as magnetostriction, spin-torque ...) is the model size together with the

A. Weddemann

Conclusion & Outlook

Conclusion

- We implemented the LLG-equations for:
 - thin films
 - ensembles of magnetic nanoparticles
- We designed novel magnetic field sensor based on highly ordered monolayers.
 - easy to control magnetic properties
 - increased sensitivity at the cost of inherent device noise
 - four different measurement regimes

See posters:

- \rightarrow Ferromagnetic materials for MEMS- and NEMS-devices
- \rightarrow Magnetic $\,$ nanoparticles for novel spintronic devices $\,$

Outlook

- Implementation of FEM-BEM frame
- Integration of physical phenomena:
 - magnetostriction
 - spin-torque effects
 - moving objects

Suspension of magnetic particles exposed to a magnetic field

10/13/2011