La Galleria delle Applicazioni raccoglie un'ampia varietà di tutorial e di app dimostrative realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file dei modelli e delle app demo pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni.

Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.


Vanadium Redox Flow Battery

This 2D example of a vanadium flow battery demonstrates how to couple a secondary current distribution model for an ion-exchange membrane to tertiary current distribution models for two different free electrolyte compartments of a flow battery. Donnan potentials are used to model the potential shifts at the interfaces between the membrane and the free electrolyte domains.

Heterogeneous Lithium-Ion Battery Model

This model describes the behavior of a lithium-ion battery unit cell modeled using an idealized three-dimensional geometry. The geometry mimics the structural details in the porous electrodes. Such models are referred to as heterogeneous models. The modeling approach for heterogeneous models differs from typical battery models, such as the Newman model. In homogeneous models, averaged ...

Lithium-Ion Battery with Multiple Intercalating Electrode Materials

Lithium-ion batteries can have multiple active materials in both the positive and negative electrodes. For example, the positive electrode can have a mix of active materials such as transition metal oxides, layered metal oxides, olivines etc. These materials can have different design properties (volume fraction, particle size), thermodynamic properties (open circuit voltage), transport ...

1D Lithium-Ion Battery Model for Internal Resistance and Voltage Loss Determination

This tutorial digs deeper into the investigation of rate capability in a battery and shows how the *Lithium-Ion Battery* interface is an excellent modeling tool for doing this. The rate capability is studied in terms of polarization (voltage loss) or the internal resistance causing this loss. A typical high current pulse test, namely a Hybrid Pulse Power Characterization (HPPC) test, is ...

Edge Effects In a Spirally Wound Lithium-Ion Battery

Due to the large differences in length scales in a lithium-ion battery, with the thickness of the different layers typically being several orders of magnitude smaller than the extension in the sheet direction, a lithium-ion battery is often well represented by a one-dimensional model. However, the packing and stacking of the battery may cause edge effects which motivate modeling in higher ...

Ohmic Losses and Temperature Distribution in a Passive PEM Fuel Cell

In small PEM fuel cell systems (in the sub-100 W range) no active devices for cooling or air transport are normally used. This is due to the desire to minimize parasitic power losses from pumps and fans, and to reduce the system complexity, size, and cost. The reactants at the cathode are therefore transported by passive convection/diffusion. Also the heat dissipation occurs by passive transport ...

1D Lithium-Ion Battery Model for Determination of Optimal Battery Usage and Design

This application example is useful for investigation of the following: Voltage, polarization (voltage drop), internal resistance, state-of-charge (SOC), and rate capability, in lithium-ion batteries under isothermal conditions. Some of the listed properties play an important role in battery management systems (BMS) in, for instance, electric and hybrid electric vehicles (see figure). The more ...

Lithium-Ion Battery Impedance Application

The goal with this application is to explain experimental electrochemical impedance spectroscopy (EIS) measurements and to show how you can use a simulation app along with measurements to estimate the properties of lithium-ion batteries. The Lithium-Ion Battery Impedance app takes measurements from an EIS experiment and uses them as inputs. It then simulates these measurements and runs a ...

Primary Current Distribution in a Lead-Acid Battery Grid Electrode

This 3D model example demonstrates the use of the Primary Current Distribution interface for modeling current distributions in electrochemical cells. In primary current distribution, the potential losses due to electrode kinetics and mass transport are assumed to be negligible, and ohmic losses are govern the current distribution in the cell. Here you investigate primary current distribution in ...

1D Lithium-Ion Battery Drive-Cycle Monitoring

This application shows how a battery cell exposed to a hybrid electric vehicle drive cycle can be investigated with the Lithium-Ion Battery interface in COMSOL. This model predicts the battery behavior to make comparisons of the monitored properties. They can be used to understand the battery's behavior during the cycle better, since the model includes can calculate more than is measurable, for ...