Galleria dei Modelli

La Galleria dei Modelli raccoglie un'ampia varietà di modelli realizzati con COMSOL Multiphysics in diversi ambiti applicativi, inclusi quelli elettrico, meccanico, fluidico e chimico. E' possibile scaricare i file .mph dei modelli pronti all'uso e le istruzioni step-by-step per costruirli, e utilizzarli come punto di partenza per le proprie simulazioni. Lo strumento di Ricerca Rapida permette di trovare i modelli che si riferiscono alla propria area di interesse. Per scaricare i file .mph dei modelli è necessario effettuare il login o creare un account COMSOL Access associato a un numero di licenza valido.

Single Particle Model for a Lithium-Ion Battery

An isothermal single particle model formulation for a lithium-ion battery is presented in this work. The single particle model is a simplification of the 1D formulation for a lithium-ion battery along with a few assumptions. The model is typically valid for low-medium current scenarios. Note that validity of the assumptions and applicability of the single particle model also depends on the ...

Thermal Modeling of a Cylindrical Li-ion Battery in 3D

This example simulates the heat profile in an air-cooled cylindrical battery in 3d. The battery is placed in a matrix in a battery pack. The thermal model is coupled to a 1d-battery model that is used to generate a heat source in the active battery material. The model requires the Batteries & Fuel Cells Module and the Heat Transfer Module

All-Solid-State Lithium-Ion Battery

This example shows how to use the Tertiary Current Distribution interface to model the currents and electrolyte mass transport in a thin-film all-solid-state lithium-ion battery. A separate Transport of Diluted Species interface is coupled to the electrochemical reactions to model the mass transport of lithium in the positive electrode. Various discharge currents are studied, and the different ...

Simulation of Electrochemical Impedance Spectroscopy

A fuel cell unit cell is modeled using the full Butler-Volmer expression for the anodic and cathodic charge transfer reactions. The anodic and cathodic overpotentials depend on the local ionic and electronic potentials, which are obtained from the charge balance equations for ionic and electronic current. A small sinusoidal perturbation of the potential around a given cell voltage is applied and ...

Thermal Modeling of a Cylindrical Li-ion Battery in 2D

This model example simulates an air-cooled cylindrical 18650 lithium-ion battery during a charge-discharge cycle, followed by a relaxing period. A one-dimensional cell model is used to model the battery cell chemistry, and a two-dimensional axi-symmetrical model is used to model the temperature in the battery.

Edge Effects In a Spirally Wound Li-Ion Battery

Due to the large differences in length scales in a lithium-ion battery, with the thickness of the different layers typically being several orders of magnitude smaller than the extension in the sheet direction, a lithium-ion battery is often well represented by a one-dimensional model. However, the packing and stacking of the battery may cause edge effects which motivate modeling in higher ...

Lithium-ion Battery with Multiple Active Materials in Electrodes

Lithium-ion batteries can have multiple active materials in both the positive and negative electrodes. For example, the positive electrode can have a mix of active materials such as transition metal oxides, layered metal oxides, olivines etc. These materials can have different design properties (volume fraction, particle size), thermodynamic properties (open circuit voltage), transport properties ...

Primary Current Distribution in a Lead-Acid Battery Grid Electrode

This 3D model example demonstrates the use of the Primary Current Distribution interface for modeling current distributions in electrochemical cells. In primary current distribution, the potential losses due to electrode kinetics and mass transport are assumed to be negligible, and ohmic losses are govern the current distribution in the cell. Here you investigate primary current distribution in ...

Fuel Cell with Serpentine Flow Field

This example models the flow and mass transport in the channels and the gas diffusion layer (GDL) of a polymer electrolyte fuel cell. The cathode electrode reaction is modeled as a boundary condition, where the local current density depends on the overpotential and the local oxygen concentration. The overpotential is solved for along the cathode boundary by the use of a distributed DAE. The anode ...

Voltammetry at a Microdisk Electrode

Voltammetry is modeled at a microelectrode of 10um radius. In this common analytical electrochemistry technique, the potential at a working electrode is swept up and down and the current is recorded. The current-voltage waveform ("voltammogram") gives information about the reactivity and mass transport properties of the analyte. Microelectrodes are popular in electroanalysis because they ...

Quick Search