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a b s t r a c t

A two-fluid electroosmotic flow in a microchannel is studied by considering full hydrodynamic and elec-
trostatic interactions on the interface. Jumps in electrical potential and in charge density across the inter-
face, in particular, are found to create counterintuitive flow behavior through the electrostatic interaction
of the interface with the external field imposed. The interfacial electrostatic effects are shown to induce
flow reversal within physically reasonable parametric ranges. It is also shown that the electrostatic prop-
erties of the interface must be carefully considered in electroosmotic pumping lest the nonconducting
fluid should stay stationary or flow in an unintended direction. A formula for quantitative control of elec-
troosmotic pumping is provided.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Electroosmosis is one of the most common techniques for con-
trolling liquid motions in a microfluidic system, where pressure-
driven flows are usually inefficient, despite its potential problems,
such as electrolysis of water, electrochemical decomposition of the
solute, generation of gases, and fluctuation of pH. It is, however,
not effective with nonconducting or weakly conducting fluids, such
as oils and organic solvents. To drive such fluids by electroosmosis,
a two-layer system is proposed, where a fluid layer with high elec-
troosmotic mobility drags another layer through the shear stress at
the interface between the two fluid layers [1,2].

It is important to understand in detail the dynamics of two-fluid
electroosmotic flows by properly modeling contributions of the
hydrodynamic and electrostatic stress components at the interface,
among other parts of the flow. At the interface of two immiscible
electrolyte solutions, a narrow region exists where the electric po-
tential changes abruptly due to the adsorption of ions [3,4]. The
sharp change at this Helmholtz layer can often be described by a
zeta-potential jump across the interface. Fluid motions induced
by the Maxwell stress associated with these ions can be explained
by the Taylor–Melcher theory, as described in detail by Melcher
and Taylor [5], Saville [6], and Burcham and Saville [7]. Theoretical
studies on droplet deformation by Silver et al. [8] and Supeene
et al. [9] and on interfacial instabilities of thin fluid films by Verma
ll rights reserved.
et al. [10] and Shankar and Sharma [11] show the importance of
the Maxwell stress on interfaces. Choi et al. [12] recently report
interesting counterintuitive fluid motions induced by this interfa-
cial Maxwell stress in the electroosmotic flow of a single layer
bounded above by an inert gas.

Gao et al. [13] and Ngoma and Erchiqui [14] analyzed steady
two-layer electroosmotic flows in a rectangular microchannel
and between two parallel plates (two-dimensional flow but with
simultaneous streamwise pressure gradient), respectively, by
assuming a Poisson–Boltzmann distribution of ions and further
applying the Debye–Hückel approximation. Across the interface
the shear stress is taken to be continuous, which should be appro-
priate if no electrostatic contribution were present at the interface.
Gao et al. [15] make a proper amendment to this problem by incor-
porating the Maxwell stress at the interface for transient two-layer
electroosmotic flows. Gao et al. [16] further consider the effect of
simultaneous pressure gradients. A coaxial two-fluid electroos-
motic flow in a circular microchannel is analyzed similarly by Liu
et al. [17].

Although some basic features of two-fluid electroosmosis are
reported in the aforementioned studies, much of its rich nature re-
mains to be examined, including that related to the flow reversal
due to interface electrostatics [12], through a careful parametric
study. In the present study, we achieve this goal by considering a
two-dimensional two-fluid electroosmotic flow between parallel
plates, without complications with benign side walls. Instead of
taking one of the layers to be nonconductive, as in the previous
studies, we analyze the hydrodynamic and electrostatic responses
of both layers by taking arbitrary permittivity.

http://dx.doi.org/10.1016/j.jcis.2011.01.107
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2. Mathematical formulation

We consider a steady unidirectional electroosmotic flow of two
immiscible viscous fluids of constant density qi, kinematic viscos-
ity mi, electric permittivity �i, and thickness di confined between
two parallel planes at distance d (=d1 + d2), as shown in Fig. 1,
where i = 1 and 2 are associated with the upper (fluid 1) and the
lower layer (fluid 2), respectively. The flow is generated by the
electrostatic reaction between a constant imposed direct-current
electric field Eel and excess ions in the electric double layers (EDLs)
adjacent to the top (i = 1) and bottom (i = 2) planes, characterized
by the Debye length kDi and the zeta potential fi (i = 1 and 2),
and by viscous dissipation outside the EDLs.

We nondimensionalize the system by using d and Eeld as unit
length and electrical potential, respectively, and write the total
electric potential in each fluid as /i(x,y) = �x + ui(y), where �x
and ui(y) represent, respectively, electrical potential due to exter-
nal electric field applied and zeta potential in a Cartesian coordi-
nate system, as shown in Fig. 1. If we limit the present analysis
to microchannels, where the Debye lengths are much smaller than
the channel thickness d, the electric potential ui due to the zeta po-
tential can be described by the Poisson–Boltzmann equation,
which is linearized using the Debye–Hückel approximation as

r2ui ¼
ui

De2
i

; ð1Þ

where Dei = kDi/d is the nondimensional Debye length.
Dimensionless boundary conditions for the potential then are

u1 = Z1 at y = h1 and u2 = Z2 at y = �h2, where the nondimensional
zeta potential Zi = fi/(Eeld) and the layer thickness hi = di/d. At the
interface between two fluids (y = 0), two boundary conditions are
required. Here we impose the zeta potential difference (Df) and
Gauss’s law for the electrical displacement,

u1 �u2 ¼ ZD ð2Þ
@/1

@y
� �r

@/2

@y
¼ �Q ; ð3Þ

where ZD = Df/(Eeld) is the dimensionless potential difference at the
interface, �r = �2/�1 is the permittivity ratio, and Q = qs/(�1Eel) is the
dimensionless surface charge density. Here ZD and Q are considered
to be independent parameters. Samec et al. [18] studied double lay-
ers at the interface between two immiscible electrolyte solutions,
and showed that for a given potential difference across the interface
the surface charge densities can be varied depending on the salt
concentrations.

The solutions to the Poisson–Boltzmann equation subjected to
the above boundary conditions are obtained as

u1 ¼ Z1 f1 cosh
y

De1
þ 1� f1 coshðh1=De1Þ

sinhðh1=De1Þ
sinh

y
De1

� �

ð0 6 y 6 h1Þ ð4Þ

u2 ¼ Z2 f2 cosh
y

De2
� 1� f2 coshðh2=De2Þ

sinhðh2=De2Þ
sinh

y
De2

� �

ð�h2 6 y 6 0Þ; ð5Þ
Fig. 1. Schematic diagram of two-layer electroosmotic system.
where

f1 ¼
csch h1

De1
þ �r

Der
ZRcsch h2

De2
þ ZD coth h2

De2

� �h i
þ Q �De1

Z1

coth h1
De1
þ �r

Der
coth h2

De2

; ð6Þ

f2 ¼
1

ZR
csch h1

De1
� ZD

ZR
coth h1

De1
þ �r

Der
csch h2

De2

h i
þ Q �De1

Z2

coth h1
De1
þ �r

Der
coth h2

De2

ð7Þ

Here the zeta potential ratio ZR = f2/f1, and the Debye length ra-
tio Der = De2/De1.

For steady unidirectional flow the x-component of the conser-
vation of momentum for each fluid is expressed as

0 ¼ @
2u1

@y2 �
EO1

Z1
r2/1; ð8Þ

0 ¼ @
2u2

@y2 � mr
EO2

Z2
r2/2; ð9Þ

where the ratio of kinematic viscosities mr = m2/m1. Here the electro-
osmotic number for each fluid, EOi ¼ ð�iEeldfiÞ=ðqim2

i Þ, measures the
driving force in each layer, and is proportional to the electrical field
imposed and the surface zeta potential. Using Eqs. (4) and (5), we
get

0 ¼ @
2u1

@y2 �
EO1

Z1De2
1

u1; ð10Þ

0 ¼ @
2u2

@y2 � mr
EO2

Z2De2
2

u2: ð11Þ

On the top and bottom planes no-slip boundary conditions
u1 = 0 at y = h1 and u2 = 0 at y = �h2 are to be imposed. On the inter-
face (y = 0), the streamwise component of the velocity vector and
the surface traction must be continuous:

u1 ¼ u2; ð12Þ
@u1

@y
� EO1

Z1

@u1

@y
¼ lr

@u2

@y
� mr

EO2

Z2

@u2

@y

� �
: ð13Þ

The above system yields the x-component velocity vector ui for
each layer as

u1 ¼ EO1 f1 cosh
y

De1
þ 1� f1 coshðh1=De1Þ

sinhðh1=De1Þ
sinh

y
De2

�

� lr

lrh1 þ h2
1� mr

EO2

EO1
� f1 � mr

EO2

EO1
f2

� �� 	
ðy� h1Þ � 1

�
; ð14Þ

u2 ¼ mrEO2 f2 cosh
y

De2
þ 1� f2 coshðh2=De2Þ

sinhðh2=De2Þ
sinh

y
De2

�

� 1
lrh1 þ h2

1� EO1

mrEO2
� EO1

mrEO2
f1 � f2

� �� 	
ðyþ h2Þ � 1

�
; ð15Þ

where lr is the ratio of dynamic viscosities. From these the interfa-
cial velocity is easily obtained as

uð0Þ ¼ �fEO1h2ð1� f1Þ þ EO2h1ð1� f2Þg=ðlrh1 þ h2Þ: ð16Þ
3. Discussion

Unidirectional velocity profiles for two-fluid electroosmotic
flow in a microchannel can be studied by imposing physically real-
istic sets of parameters on Eqs. (14) and (15). Among numerous
sets tried, we present here only results of great consequence. For
two conducting fluids, we focus on a parametric study for the
viscosity ratio lr, permittivity ratio �r, interfacial potential jump
ZD, and interfacial charge-density jump �Q while keeping the
channel width fixed in microscale (De1 = De2 = 0.05). The thickness
of fluids equal (h1 = h2 = 1/2), and the zeta potentials on the
channel wall identical (ZR = 1). The electroosmotic numbers EOi’s
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can be scaled out, as seen below. We then discuss the effect of dif-
ferent Debye lengths of each layer, and in particular a case in which
one of the fluids is nonconducting (infinite Debye length) and
dragged by shear stress on the interface.

Fig. 2 shows velocity profiles when neither the jump in interfa-
cial potential nor that in interfacial charge is present (ZD = 0 and
Q = 0). In Fig. 2a, the viscosities of the two fluids are different,
whereas in Fig. 2b the permittivities are different. As can easily
be understood, the maximum velocity occurs in the fluid with low-
er viscosity in Fig. 2a. The profile for equal viscosity (lr = 1) repre-
sents a typical single-fluid electroosmotic flow in a microchannel.
The interfacial velocity decreases with the viscosity of the lower
fluid, creating a strong dependence of the flow rate on the viscosity
ratio. Due to the balance in shear stress across the interface, a vis-
cosity difference always generates a jump in velocity gradient at
the interface. When the permittivities are different, the maximum
velocity occurs in the fluid with higher permittivity, as seen in
Fig. 2b. It is noted here that the velocity gradient stays continuous
across the interface.

In Fig. 3, velocity profiles and corresponding potential distribu-
tions are shown for four different values of the interfacial zeta po-
tential jump ZD when fluid viscosities and permittivities are
identical (lr = 1 and �r = 1) and the jump in interface charge den-
sity is absent (Q = 0). Since the wall zeta potentials are identical
(ZR = 1), the potential distribution shows a symmetric profile for
ZD = 0. If ZD < 0 (ZD > 0), the potential u of the top fluid attains more
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Fig. 2. Velocity profiles for ZD = 0 and Q = 0: (a) viscosity variation; (b) permittivity
variation.
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distribution.
positive (negative) values toward the interface, considering Z < 0
for the flow to the right, as shown. The top (bottom) fluid thus
tends to be attracted toward the anode, or to the left in Fig. 3, near
the interface via electrostatic interaction. Since the interfacial
velocities are always identical, due to the no-slip condition (Eq.
(12)) imposed on the interface, velocity profiles shown in Fig. 3a
are exhibited. For a sufficiently large ZD, flow reversal can occur
due to the electrostatics of the interface, as can be clearly seen in
Fig. 3a. It is interesting to note that the interfacial velocity is iden-
tical regardless of ZD. This can be easily understood by examining
the interfacial velocity u(0) from either Eq. (14) or (15),

uð0Þ ¼ � EO1

lrh1 þ h2
h2 þ �rZRh1 �

Der

Der þ �r
�rZD

h2

Der
� h1

� ���

þ �rh1 þ h2ð ÞQ � De1

Z1

	�
; ð17Þ

where it is seen that the dependence on ZD vanishes if h1 = h2 and
De1 = De2.

In Fig. 4, the jump in interfacial charge density is switched on,
while the zeta potential jump ZD = 0 is imposed with �r = 1 and
lr = 1. The dimensional surface-charge density qs � 0.015 C/m2

when the multiple of nondimensional parameters, QDe1/Z1 or
QDe/Z for short, chosen here to represent the interfacial charge-
density jump, is set to unity with 20 mV zeta potential between
the water and the channel wall and Debye length kd = 1 nm. Samec
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et al. [18] showed that the surface charge density on the water/
nitrobenzene interface at various concentrations is in the range
of a few tens of millicolumbs per square meter. The parameters
chosen in Fig. 4 are thus within reasonable ranges. Unlike the
zeta-potential jump, the charge-density jump, does not create
additional asymmetry about the interface. With the difference in
viscosities and permittivities absent, both the potential distribu-
tion and the velocity show symmetric profiles. In contrast to the
case with an interfacial potential jump, excess ions with like
polarity are accumulated adjacent to the interface on both sides.
If QDe/Z < 0 (QDe/Z > 0), this creates conspicuous flow enhance-
ment (retardation) near the interface, as shown in Fig. 4a. It is seen
that the flow retardation can generate a reverse flow along the cen-
ter of the channel to the opposite direction of the flow near the top
and bottom wall.

In Fig. 5, velocity profiles are shown for four different value of
Debye length in layer 2 (De2), while the fluid viscosities, permittiv-
ities, and Debye length of layer 1 are fixed as lr = 1, �r = 1, and
De1 = 0.05. Higher values of De represent lower conductivities,
and so the dynamics in layer 2 become more passive to layer 1.
The corresponding velocity field in layer 2 thus approach a simplis-
tic linear profile with the increase in De2. When the Debye lengths
of two layers are different, the magnitude of the electrical potential
gradients across the interface are different because the potential
would vary with a higher gradient in the thinner Debye layer.
Symmetry or antisymmetry in electrical potential, as illustrated
in Fig. 3b, thus is no longer maintained. When the potential-jump
condition is imposed at the interface, the flow rate seems to de-
crease monotonically with the increase in De2. When a jump in
surface charge is imposed, however, the flow enhancement, shown
in Fig. 4, promotes flow near the interface. The flow rate thus is not
diminished as clearly as in the other case.

One of the more useful applications of two-fluid electroosmotic
flow is electroosmotic pumping, where a nonconducting fluid can
be dragged by an electroosmotically mobile fluid. The behavior of
a nonconducting fluid 2 (without lose of generality) can be recov-
ered by imposing lack of ions (De2 ?1) and no zeta potential on
the bottom wall (ZR ? 0), while maintaining a small Debye-
length-to-layer-thickness ratio for fluid 1 (De1� 1). In these limits,
the velocity profile (15) of the lower fluid can be simplified, using
sinh(h2/De2) � tanh(h2/De2) � h2/De2, csch(h1/De1) � 0, and
coth(h1/De1) � 1:

�u2ðyÞ
EO1
¼ 1

lrh1þh2
1þ�r

h1�De1

h2

� �
ZD� 1þ�r

h1

h2

� �
Q �De1

Z1

� �
ðyþh2Þ:

ð18Þ

It is noted that the velocity profile in the nonconducting fluid
becomes essentially linear in y. The pumping rate of the lower
layer, or the volumetric flow rate, then is simply 1/4 of the interfa-
cial velocity u2(0), obtained easily from (Eq. (18)). If the top wall
zeta potential is negative (Z1 < 0 and EO1 < 0), the top-layer flow
in the absence of any interfacial electrostatics will be away from
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the anode, or to the right. This flow can be augmented by the inter-
action of the imposed external field and excess ions near the inter-
face, quantified by the potential jump ZD and the charge-density
jump Q. It can be deduced from (Eq. (18)) that positive ZD and Q
both enhance the flow to the right, and vice versa. Since for non-
conductive media �r is usually small, the sensitivity to ZD is ex-
pected to be much less than that to Q.

In Fig. 6, QDe1/Z1 is thus chosen to be the parameter in showing
the velocity and potential profiles of two-layer electroosmosis with
a nonconducting layer. The solid line shows a typical profile for
electroosmotic pumping in the absence of interfacial electrostatics.
No jump in velocity gradient is seen, because lr = 1. The case for
positive Q corresponds to the broken line (QDe1/Z1 = �1) because
Z1 < 0 and EO1 < 0 for electroosmotic flow to the right in Fig. 6. In
this case the potential distribution indicates top-layer flow to the
right adjacent to the top wall and to the left adjacent to the inter-
face, resulting in the wiggly profile shown. Interfacial velocity is
enhanced, as explained above. Overall the flow rate of the conduct-
ing layer is diminished, while that of the nonconducting layer is
enhanced, which may be desirable in electroosmotic pumping. If
Q < 0, however, it is seen that the flow of the nonconducting layer
can be in the reverse direction at the expense of an enhanced flow
rate of the conducting layer. In simplistic electroosmotic pumping
this case may be disastrous, but the flow reversal can be useful for
a carefully designed microfluidic device. For effective pumping of a
nonconducting fluid in the same direction as the conducting
medium,
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Fig. 6. Velocity profiles and potential distributions in two-layer electroosmosis
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De1

Z1
Q < 1 ð19Þ

must be met.
In actual microchannel flows side walls exist, and three-dimen-

sional effects may have to be considered. Through comparisons
with the limited data available in the literature, we suspect that
the side-wall effects are localized, and the essential dynamics of
the electroosmotic flow is adequately described by the present
two-dimensional analysis. As an example, steady-state velocity
profiles along the vertical midplane of a rectangular microchannel
obtained by Gao et al. [15], who analyzed three-dimensional tran-
sient behavior of two-layer (conducting/nonconducting) electroos-
mosis with a simple interfacial boundary condition of prescribed
zeta potential, are compared with the present results in Fig. 7. In
matching the prescribed interfacial potential in the analysis of
Gao et al. [15] the potential jump ZD at the interface is set to zero,
and the jump Q in charge density is varied. The velocity profiles for
three different interfacial zeta potentials in the conducting layer
(Layer 1) and the linear profiles in the nonconducting layer (Layer
2) all show good agreements between two- and three-dimensional
analysis. The intriguing flow dynamics described above using a
two-dimensional analysis thus should exist in actual microchannel
flows.
4. Concluding remarks

The zeta potential and the charge density across the interface of
two fluids are shown to influence the dynamics of two-fluid elec-
troosmotic flows greatly. Flow reversal due to the electrostatic
interaction of the interface with the external field imposed can oc-
cur in practical ranges of flow parameters. The flow can also be
multiply laminated by fluid motions in opposing directions. The
nonconducting fluid in two-fluid electroosmotic pumping assumes
a linear velocity profile, and can be clogged or flow in an unin-
tended direction. A careful selection of the conducting medium
and flow conditions are thus required, as shown quantitatively in
the present study.

For the unidirectional flow studied here, the interface is as-
sumed to stay planar. For practical purposes, the stability of the
various flows obtained above needs to be analyzed by allowing
the deformation of the interface, which is a good subject for future
studies.
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